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Abstract. Particle sensing technology has shown great po-
tential for monitoring particulate matter (PM) with very few
temporal and spatial restrictions because of its low cost, com-
pact size, and easy operation. However, the performance of
low-cost sensors for PM monitoring in ambient conditions
has not been thoroughly evaluated. Monitoring results by
low-cost sensors are often questionable. In this study, a low-
cost fine particle monitor (Plantower PMS 5003) was colo-
cated with a reference instrument, the Synchronized Hybrid
Ambient Real-time Particulate (SHARP) monitor, at the Cal-
gary Varsity air monitoring station from December 2018 to
April 2019. The study evaluated the performance of this
low-cost PM sensor in ambient conditions and calibrated
its readings using simple linear regression (SLR), multiple
linear regression (MLR), and two more powerful machine-
learning algorithms using random search techniques for the
best model architectures. The two machine-learning algo-
rithms are XGBoost and a feedforward neural network (NN).
Field evaluation showed that the Pearson correlation (r) be-
tween the low-cost sensor and the SHARP instrument was
0.78. The Fligner and Killeen (F–K) test indicated a sta-
tistically significant difference between the variances of the
PM2.5 values by the low-cost sensor and the SHARP instru-
ment. Large overestimations by the low-cost sensor before
calibration were observed in the field and were believed to
be caused by the variation of ambient relative humidity. The
root mean square error (RMSE) was 9.93 when comparing
the low-cost sensor with the SHARP instrument. The calibra-
tion by the feedforward NN had the smallest RMSE of 3.91

in the test dataset compared to the calibrations by SLR (4.91),
MLR (4.65), and XGBoost (4.19). After calibrations, the F–
K test using the test dataset showed that the variances of the
PM2.5 values by the NN, XGBoost, and the reference method
were not statistically significantly different. From this study,
we conclude that a feedforward NN is a promising method to
address the poor performance of low-cost sensors for PM2.5
monitoring. In addition, the random search method for hy-
perparameters was demonstrated to be an efficient approach
for selecting the best model structure.

1 Introduction

Particulate matter (PM), whether it is natural or anthro-
pogenic, has pronounced effects on human health, visibil-
ity, and global climate (Charlson et al., 1992; Seinfeld and
Pandis, 1998). To minimize the harmful effects of PM pol-
lution, the Government of Canada launched the National Air
Pollution Surveillance (NAPS) program in 1969 to monitor
and regulate PM and other criteria air pollutants in populated
regions, including ozone (O3), sulfur dioxide (SO2), carbon
monoxide (CO), and nitrogen dioxide (NO2). Currently, PM
monitoring is routinely carried out at 286 designated air sam-
pling stations in 203 communities in all provinces and territo-
ries of Canada (Government of Canada, 2019). Many of the
monitoring stations use a beta attenuation monitor (BAM),
which is based on the adsorption of beta radiation, or a ta-
pered element oscillating microbalance (TEOM) instrument,
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which is a mass-based technology to measure PM concen-
trations. An instrument that combines two or more technolo-
gies, such as the Synchronized Hybrid Ambient Real-time
Particulate (SHARP) monitor, is also used in some monitor-
ing stations. The SHARP instrument combines light scatter-
ing with beta attenuation technologies to determine PM con-
centrations.

Although these instruments are believed to be accurate for
measuring PM concentration and have been widely used by
many air monitoring stations worldwide (Chow and Watson,
1998; Patashnick and Rupprecht, 1991), they have common
drawbacks: they can be challenging to operate, bulky, and
expensive. The instrument costs from CAD 8000 (Canadian
dollars) to tens of thousands of dollars (Chong and Kumar,
2003). The SHARP instrument used in this study as a refer-
ence method costs approximately CAD 40 000 (CD Nova In-
struments Ltd., 2017). Significant resources, such as special-
ized personnel and technicians, are also required for regular
system calibration and maintenance. In addition, the sparsely
spread stations may only represent PM levels in limited ar-
eas near the stations because PM concentrations vary spa-
tially and temporally depending on local emission sources
as well as meteorological conditions (Xiong et al., 2017).
Such a low-resolution PM monitoring network cannot sup-
port public exposure and health effects studies that are re-
lated to PM because these studies require high-spatial- and
temporal-resolution monitoring networks in the community
(Snyder et al., 2013). In addition, the well-characterized sci-
entific PM monitors are not portable due to their large size
and volumetric flow rate, which means they are not practical
for measuring personal PM exposure (White et al., 2012).

As a possible solution to the above problems, a large num-
ber of low-cost PM sensors could be deployed, and a high-
resolution PM monitoring network could be constructed.
Low-cost PM sensors are portable and commercially avail-
able. They are cost-effective and easy to deploy, operate, and
maintain, which offers significant advantages compared to
conventional analytical instruments. If many low-cost sen-
sors are deployed, PM concentrations can be monitored con-
tinuously and simultaneously at multiple locations for a rea-
sonable cost (Holstius et al., 2014). A dense monitoring net-
work using low-cost sensors can also assist in mapping hot
spots of air pollution, creating emission inventories of air pol-
lutants, and estimating adverse health effects due to personal
exposure to PM (Kumar et al., 2015).

However, low-cost sensors present challenges for broad
application and installation. Most sensor systems have not
been thoroughly evaluated (Williams et al., 2014), and the
data generated by these sensors are of questionable quality
(Wang et al., 2015). Currently, most low-cost sensors are
based on laser light-scattering (LLS) technology, and the ac-
curacy of LLS is mostly affected by particle composition,
size distribution, shape, temperature, and relative humidity
(Jayaratne et al., 2018; Wang et al., 2015).

Several studies have evaluated LLS sensors by compar-
ing the performance of low-cost sensors with medium- to
high-cost instruments under laboratory and ambient condi-
tions. For example, Zikova et al. (2017) used low-cost Speck
monitors to measure PM2.5 concentrations in indoor and out-
door environments, and the low-cost sensors overestimated
the concentration by 200 % for indoor and 500 % for out-
door compared to a reference instrument – the Grimm 1.109
dust monitor. Jayaratne et al. (2018) reported that PM10 con-
centrations generated by a Plantower low-cost particle sensor
(PMS 1003) were 46 % greater than a TSI 8350 DustTrak
DRX aerosol monitor under a foggy environment. Wang et
al. (2015) compared PM measurements from three low-cost
LLS sensors – Shinyei PPD42NS, Samyoung DSM501A,
and Sharp GP2Y1010AU0F – with a SidePack (TSI Inc.) us-
ing smoke from burning incense. High linearity was found
with R2 greater than 0.89, but the responses depended on
particle composition, size, and humidity. The Air Quality
Sensor Performance Evaluation Center (AQ-SPEC) of the
South Coast Air Quality Management District (SCAQMD)
also evaluated the performances of three Purple Air PA-II
sensors (model: Plantower PMS 5003) by comparing their
readings with two United States Environmental Protection
Agency (US EPA) Federal Equivalent Method (FEM) instru-
ments – BAM (MetOne) and Grimm dust monitors in lab-
oratory and field environments in southern California (Pa-
papostolou et al., 2017). Overall, the three sensors showed
moderate to good accuracy compared to the reference in-
strument for PM2.5 for a concentration range between 0 and
250 µg m−3. Lewis et al. (2016) evaluated low-cost sensors in
the field for O3, nitrogen oxide (NO), NO2, volatile organic
compounds (VOCs), PM2.5, and PM10; only the O3 sensors
showed good performance compared to the reference mea-
surements.

Several studies have developed calibration models using
multiple techniques to improve low-cost sensor performance.
For example, De Vito et al. (2008) tested feedforward neu-
ral network (NN) calibration for benzene monitoring and
reported that further calibration was needed for low con-
centrations. Bayesian optimization was also used to search
feedforward NN structures for the calibrations of CO, NO2,
and NOx low-cost sensors (De Vito et al., 2009). Zheng et
al. (2018) calibrated the Plantower low-cost particle sensor
PMS 3003 by fitting a linear least-squares regression model.
A nonlinear response was observed when ambient PM2.5 ex-
ceeded 125 µg m−3. The study concluded that a quadratic fit
was more appropriate than a linear model to capture this non-
linearity.

Zimmerman et al. (2018) explored three different calibra-
tion models, including laboratory univariate linear regres-
sion, empirical MLR, and a more modern machine-learning
algorithm, random forests (RF), to improve the Real-time Af-
fordable Multiple-Pollutant (RAMP) sensor’s performance.
They found that the sensors calibrated by RF models showed
improved accuracy and precision over time, with average rel-
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ative errors of 14 % for CO, 2 % for CO2, 29 % for NO2, and
15 % for O3. The study concluded that combing RF models
with low-cost sensors is a promising approach to address the
poor performance of low-cost air quality sensors.

Spinelle et al. (2015) reported several calibration meth-
ods for low-cost O3 and NO2 sensors. The best calibration
method for NO2 was an NN algorithm with feedforward ar-
chitecture. O3 could be calibrated by simple linear regression
(SLR). Spinelle et al. (2017) also evaluated and calibrated
NO, CO, and CO2 sensors, and the calibrations by feedfor-
ward NN architectures showed the best results. Similarly,
Cordero et al. (2018) performed a two-step calibration for
an AQmesh NO2 sensor using supervised machine-learning
regression algorithms, including NNs, RFs, and support vec-
tor machines (SVMs). The first step produced an explanatory
variable using multivariate linear regression. In the second
step, the explanatory variable was fed into machine-learning
algorithms, including RF, SVM, and NN. After the calibra-
tion, the AQmesh NO2 sensor met the standards of accuracy
for high concentrations of NO2 in the European Union’s Di-
rective 2008/50/EC on air quality. The results highlighted the
need to develop an advanced calibration model, especially
for each sensor, as the responses of individual sensors are
unique.

Williams et al. (2014) evaluated eight low-cost PM sen-
sors; the study showed frequent disagreement between the
low-cost PM sensors and FEMs. In addition, the study con-
cluded that the performances of the low-cost sensors were
significantly impacted by temperature and relative humid-
ity (RH). Recurrent NN architectures were also tested for
calibrating some gas sensors (De Vito et al., 2018; Espos-
ito et al., 2016). The results showed that the dynamic ap-
proaches performed better than traditional static calibration
approaches. Calibrations of PM2.5 sensors were also reported
in recent studies. Lin et al. (2018) performed two-step cali-
brations for PM2.5 sensors using 236 hourly data points col-
lected on buses and road-cleaning vehicles. The first step
was to construct a linear model, and the second step used
RF machine learning for further calibration. The RMSE after
the calibrations was 14.76 µg m−3 compared to a reference
method. The reference method used in this study was a Dy-
los DCI1700 device, which is not a US EPA federal refer-
ence method (FRM) or FEM. Loh and Choi (2019) trained
and tested the SVM, K-nearest neighbor, RF, and XGBoost
machine-learning algorithms to calibrate PM2.5 sensors us-
ing 319 hourly data points. XGBoost archived the best per-
formance with an RMSE of 5.0 µg m−3. However, the low-
cost sensors in this study were not colocated with the ref-
erence method, and the machine-learning models were not
tested using unseen data (test data) for predictive power and
overfitting.

Although there have been studies on calibrating low-cost
sensors, most of them focused on gas sensors or used short-
term data to calibrate PM sensors. To our best knowledge,
no one has reported studies on PM sensor calibration us-

ing random search techniques for the best machine-learning
model configuration under ambient conditions during dif-
ferent seasons. In this study, a low-cost fine particle mon-
itor (Plantower PMS 5003) was colocated with a SHARP
monitor model 5030 at Calgary Varsity air monitoring sta-
tion in an outdoor environment from 7 December 2018 to
26 April 2019. The SHARP instrument is the reference
method in this study and is a US EPA FEM (US EPA, 2016).
The objectives of this study are (1) to evaluate the perfor-
mance of the low-cost PM sensor in a range of outdoor envi-
ronmental conditions by comparing its PM2.5 readings with
those obtained from the SHARP instrument and (2) to assess
four calibration methods: (a) an SLR or univariate linear re-
gression based on the low-cost sensor values; (b) a multiple
linear regression (MLR) using the PM2.5, RH, and temper-
ature measured by the low-cost sensor as predictors; (c) a
decision-tree-based ensemble algorithm, called XGBoost or
Extreme Gradient Boosting; and (d) a feedforward NN archi-
tecture with a back-propagation algorithm.

XGBoost and NN are the most popular algorithms used on
Kaggle – a platform for data science and machine-learning
competition. In 2015, 17 winners in 29 competitions on Kag-
gle used XGBoost, and 11 winners used deep NN algorithms
(Chen and Guestrin, 2016).

This study is unique in the following ways.

1. To the best of our knowledge, this is the first compre-
hensive study using long-term data to calibrate low-cost
particle sensors in the field. Most previous studies fo-
cused on calibrating gas sensors (Maag et al., 2018).
There are two studies on PM sensor calibrations using
machine learning, but they used a short-term dataset that
did not include seasonal changes in ambient conditions
(Lin et al., 2018; Loh and Choi, 2019). The shortcom-
ings of the two studies were discussed above.

2. Although several studies have researched the calibration
of gas sensors using NN, this study explores multiple
hyperparameters to search for the best NN architecture.
Previous research configured one to three hyperparam-
eters compared to six in this study (De Vito et al., 2008,
2009, 2018; Esposito et al., 2016; Spinelle et al., 2015,
2017). In addition, this study tested the rectified linear
unit (ReLU) as the activation function in the feedfor-
ward NN. Compared to the sigmoid and tanh activation
functions used in previous studies for NN calibration
models, the ReLU function can accelerate the conver-
gence of stochastic gradient descent to a factor of 6
(Krizhevsky et al., 2017).

3. Previous NN and tree-based calibration models used a
manual search or grid search for hyperparameter tuning.
This study introduced a random search method for the
best calibration models. A random search is more effi-
cient than a traditional manual and grid search (Bergstra
and Bengio, 2012) and evaluates more of the search
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Figure 1. The low-cost sensor used in the study and the ambient
inlet of the reference method – SHARP model 5030.

space, especially when the search space is more than
three dimensions (Timbers, 2017). Zheng (2015) ex-
plained that a random search with 60 samples will find
a close-to-optimal combination with 95 % probability.

2 Method

2.1 Data preparation

One low-cost sensor unit was provided by the Calgary-based
company SensorUp and deployed at the Varsity station in the
Calgary Region Airshed Zone (CRAZ) in Calgary, Alberta,
Canada. The unit contains one sensor, one electrical board,
and one housing as a shelter. The sensor in the unit is the
Plantower PMS 5003, and it measured outdoor fine particle
(PM2.5) concentrations (µg m−3), air temperature (◦C), and
RH (%) every 6 s. The minimum detectable particle diameter
by the sensor is 0.3 µm. The instrument costs approximately
CAD 20 and is referred to as the low-cost sensor in this paper.

The low-cost sensor is based on LLS technology; PM2.5
mass concentration is estimated from the detected amount of
scattered light. The LLS sensor is installed on the electrical
board and then placed in the shelter for outdoor monitoring.
The unit has a wireless link to a router in the Varsity station.
A picture of the low-cost sensor and the monitoring environ-
ment in which the low-cost sensor unit and the SHARP in-
strument were colocated on the roof of the Varsity station is
provided in Fig. 1. The location of the Varsity station is pro-
vided in Fig. 2. The router uses cellular service to transfer the
data from the low-cost sensor to SensorUp’s cloud data stor-
age system. The measured outdoor PM2.5, temperature, and
RH data at a 6 s interval from 00:00 on 7 December 2018
to 23:00 on 26 April 2019 were downloaded from the cloud
data storage system for evaluation and calibration.

The reference instrument used to evaluate the low-cost
sensor is a Thermal Fisher Scientific SHARP model 5030.

Table 1. Ambient conditions measured by SHARP.

Meteorological parameters SHARP value

Temperature −31.4–19◦C
RH 10 %–99 %
Wind speed 4.3–37.1 km h−1 (at 10 m of altitude)

The SHARP instrument was installed at the Calgary Var-
sity station by CRAZ. The SHARP instrument continuously
uses two compatible technologies, light scattering and beta
attenuation, to measure PM2.5 every 6 min with an accu-
racy of ±5 %. The SHARP instrument is operated and main-
tained by CRAZ in accordance with the provincial gov-
ernment’s guidelines outlined in Alberta’s air monitoring
directive. The instrument was calibrated monthly. Hourly
PM2.5 data are published on the Alberta Air Data Ware-
house website (http://www.airdata.alberta.ca/, last access:
3 June 2019). The Calgary Varsity station also continuously
monitors CO, methane, oxides of nitrogen, non-methane hy-
drocarbons, outdoor air temperature, O3, RH, total hydro-
carbon, wind direction, and wind speed. Detailed informa-
tion on the analytical systems for the CRAZ Varsity station
can be found on their website (https://craz.ca/monitoring/
info-calgary-nw/, last access: 3 June 2019).

The meteorological parameters in this study measured by
the SHARP instrument are presented in Table 1.

The following steps were taken to process the raw data
from 00:00 on 7 December 2018 to 23:00 on 26 April 2019.

1. The 6 s interval data recorded by the low-cost sensor,
including PM2.5, temperature, and RH, were averaged
into hourly data to pair with SHARP data because only
hourly SHARP data are publicly available.

2. The hourly sensor data and hourly SHARP data were
combined into one structured data table. PM2.5, temper-
ature, and RH by the low-cost sensor as well as PM2.5
by SHARP columns in the data table were selected. The
data table then contains 3384 rows and four columns.
Each row represents one hourly data point. The columns
include the data measured by the low-cost sensor and
the SHARP instrument.

3. Rows in the data table with missing values were re-
moved – 299 missing values for PM2.5 from the low-
cost sensor and 36 missing values for PM2.5 from the
SHARP instrument. The reason for missing data from
the SHARP instrument is the calibration. However, the
reason for missing data from the low-cost sensor is un-
known.

4. The data used for NN were transformed by z standard-
ization with a mean of zero and a standard deviation
of 1.

Atmos. Meas. Tech., 13, 1693–1707, 2020 www.atmos-meas-tech.net/13/1693/2020/

http://www.airdata.alberta.ca/
https://craz.ca/monitoring/info-calgary-nw/
https://craz.ca/monitoring/info-calgary-nw/


M. Si et al.: Evaluation and calibration of a low-cost particle sensor in ambient conditions 1697

Figure 2. Location of the Varsity air monitoring station. The map was created using ArcGIS®. The administrative boundaries in Canada and
imagery data were provided by Natural Resources Canada (2020) and DigitalGlobe (2019).

Figure 3. Example of a neural network structure.
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Figure 4. Comparison of the hourly PM2.5 values between the low-cost PM sensor and SHARP. Based on 3050 hourly paired data points.
The low-cost sensor has 250 hourly data points greater than 30 µg m−3. SHARP has 174 hourly data points greater than 20 µg m−3. Bars
indicate the 25th and 75th percentile values, whiskers extend to values within 1.5 times the interquartile range (IQR), and dots represent
values outside the IQR. The box plot explanation on the right is adjusted from DeCicco (2016).

After the above steps, the processed data table with 3050
rows and four columns was used for evaluation and calibra-
tion. The data file is provided in the Supplement to this pa-
per. Each row represents one example or sample for training
or testing by the calibration methods.

2.2 Low-cost sensor evaluation

The Pearson correlation coefficient was used to compare the
correlation for PM2.5 values between the low-cost sensor and
the SHARP. SHARP was the reference method. The PM2.5
data by the low-cost sensor and SHARP were also compared
using root mean square error (RMSE), mean square error
(MSE), and mean absolute error (MAE).

The Fligner and Killeen test (F–K test) was used to eval-
uate the equality (homogeneity) of variances for PM2.5 val-
ues between the low-cost sensor and the SHARP instrument
(Fligner and Killeen, 1976). The F–K test is a superior op-
tion in terms of robustness and power when data are non-
normally distributed, the population means are unknown, or
outliers cannot be removed (Conover et al., 1981; de Smith,
2018). The null hypothesis of the F–K test is that all popu-
lations’ variances are equal; the alternative hypothesis is that
the variances are statistically significantly different.

2.3 Calibration

Four calibration methods were evaluated: SLR, MLR, XG-
Boost, and NN. Some predictions from the SLR, MLR, and
XGBoost have negative values because they extrapolate ob-
served values and regression is unbounded. When the pre-
dicted PM2.5 values generated by these calibration methods
were negative, the negative values were replaced with the
sensor data.

MLR, XGBoost, and feedforward NN use the PM2.5, tem-
perature, and RH data measured by the low-cost sensor as in-
puts. The PM2.5 measured by the SHARP instrument is used
as the target to supervise the machine-learning process. The
processed dataset, with 3050 rows and four columns, was
randomly shuffled and then divided into a training set, which
was composed of the data used to build models and minimize
the loss function, and a test set, which was composed of the
data that the model had never been run with before testing (Si
et al., 2019). The test dataset was only used once and gave an
unbiased evaluation of the final model’s performance. The
evaluation was to test the ability of the machine-learning
model to provide sensible predictions with new inputs (Le-
Cun et al., 2015). The training dataset had 2440 examples
(samples). The test dataset had 610 examples (samples).
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Figure 5. PM2.5, relative humidity, and temperature data on the basis of a 24 h rolling average.

Figure 6. SHARP versus low-cost sensor PM2.5 concentration (µg m−3). The yellow dashed line is a 1 : 1 line. The solid blue line is a
regression line. Panel (a) is in full scale, and panel (b) is a zoom-in plot of panel (a). The green circle represents data density.
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Figure 7. PM2.5 versus relative humidity.

Figure 8. Data density comparison in the test dataset. Based on 610 test examples. NN: neural network, MLR: multiple linear regression,
SLR: simple linear regression. PM2.5 data greater than 30 µg m−3 are not shown in the figure. See the box plot explanation in Fig. 4.

2.3.1 Simple linear regression and multiple linear
regression

The calibration by an SLR used Eq. (1).

ŷ = β0+β1×PM2.5 (1)

β0 and β1 are the model coefficients and were calculated us-
ing the training dataset; ŷ is a model-predicted (calibrated)
value. PM2.5 is the value measured by the low-cost sensor.

The MLR used PM2.5, RH, and temperature measured by
the low-cost sensor as predictors because the low-cost sensor
only measured these parameters. The model is expressed as
Eq. (2).

ŷ = β0+β1×PM2.5+β2× T +β3×RH (2)

The model coefficients, β0 to β3, were calculated using the
training dataset with SHARP-provided readings as ŷ. The
outputs of the models generated by the SLR and MLR were
evaluated by comparing to the SHARP readings in the test
dataset.

2.3.2 XGBoost

XGBoost is a scalable decision-tree-based ensemble algo-
rithm, and it uses a gradient boosting framework (Chen and
Guestrin, 2016). The XGBoost was implemented using the
XGBoost (version 0.90) and scikit-learn (version 0.21.2)
packages in Python (version 3.7.3). A random search method
(Bergstra and Bengio, 2012) was used to tune the hyperpa-
rameters in the XGBoost algorithm, and the hyperparameters
tuned include the following:

Atmos. Meas. Tech., 13, 1693–1707, 2020 www.atmos-meas-tech.net/13/1693/2020/
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Figure 9. Data distribution comparison. Based on 610 test examples. NN: neural network, MLR: multiple linear regression, SLR: simple
linear regression.

Figure 10. Performances of different calibration methods. Based on 610 test examples. NN: neural network, MLR: multiple linear regression,
SLR: simple linear regression.
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Table 2. Calibration results by SLR and MLR using the test dataset.

Criteria Low-cost sensor SLR MLR

RMSE 9.93 4.91 4.65

MSE 98.62 24.09 21.61

MAE 5.63 3.21 3.09

Pearson r 0.74 0.74 0.77

p value in 7.062× 5.81× 9.90×
the F–K test 10−09 10−13 10−10

β0 – 2.49 8.47

β1 0.41 0.46

β2 −0.12

β3 −0.0055

Note: the test dataset contains 660 examples.

– the number of trees to fit (n_estimator);

– the maximum depth of a tree (max_depth);

– the step size shrinkage used in an update (learn-
ing_rate);

– the subsample ratio of columns when constructing each
tree (colsample_bytree);

– the minimum loss reduction required to make a further
partition on a leaf node of the tree (gamma);

– L2 regularization on weights (reg_lambda); and

– the minimum sum of instance weight needed in a child
(min_child_ weight).

A detailed explanation of each hyperparameter is provided in
the XGBoost documentation (XGBoost developers, 2019).
The 10-fold cross-validation was used to select the best
model with minimum MSE from the random search. The best
model was then evaluated against the SHARP PM2.5 data us-
ing the test dataset.

2.3.3 Neural network

A fully connected feedforward NN architecture was used in
the study. In a fully connected NN, each unit (node) in a layer
is connected to each unit in the following layer. Data from the
input layer are passed through the network until the unit(s)
in the output layer is (are) reached. An example of a fully
connected feedforward NN is presented in Fig. 3. A back-
propagation algorithm is used to minimize the difference be-
tween the SHARP-measured values and the predicted values
(Rumelhart et al., 1986).

The NN was implemented using the Keras (version 2.2.4)
and TensorFlow (version 1.14.0) libraries in Python (version

3.7.3). Keras and TensorFlow were the most referenced deep-
learning frameworks in scientific research in 2017 (RStudio,
2018). Keras is the front end of TensorFlow.

The learning rate, L2 regularization rate, number of hidden
layers, number of units in the hidden layers, and optimiza-
tion methods were tuned using the random search method
provided in the scikit-learn machine-learning library. A 10-
fold cross-validation was used to evaluate the models. The
model with the minimum MSE was considered to be the best-
fit model and then used for model testing.

3 Results and discussion

3.1 Sensor evaluation

3.1.1 Hourly data

The RMSE, MSE, and MAE between the low-cost sensor
and SHARP for the hourly PM2.5 data were 10.58, 111.83,
and 5.74. The Pearson correlation coefficient r value was
0.78. The PM2.5 concentrations by the sensor ranged from
0 to 178 µg m−3 with a standard deviation of 14.90 µg m−3

and a mean of 9.855 µg m−3. The PM2.5 concentrations by
SHARP ranged from 0 to 80 µg m−3 with a standard devia-
tion of 7.80 and a mean of 6.55 µg m−3. Both SHARP and the
low-cost sensor dataset had a median of 4.00 µg m−3 based
on hourly data (Fig. 4). The violin plot in Fig. 4 describes the
distribution of the PM2.5 values measured by the low-cost
sensor and SHARP using a density curve. The width of each
curve represents the frequency of PM2.5 values at each con-
centration level. The p value from the F–K test was less than
2.2× 10−16, indicating that the variance of the PM2.5 val-
ues measured by the low-cost sensor was statistically signif-
icantly different from the variance of the PM2.5 values mea-
sured by the SHARP instrument.

3.1.2 24 h rolling average data

Over 24 h, the median value for SHARP was 5.38 µg m−3,
and for the low-cost sensor it was 5.01 µg m−3. Over
5 months (December 2018 to April 2019), the low-cost sen-
sor tended to generate higher PM2.5 values compared to the
SHARP monitoring data (Fig. 5)

When PM2.5 concentrations were greater than 10 µg m−3,
the low-cost sensor consistently produced values that were
higher than the reference method (Fig. 6). When the con-
centrations were less than 10 µg m−3, the performance of the
low-cost sensor was close to the reference method, producing
slightly smaller values (Fig. 6)

3.2 Calibration by simple linear regression and
multiple linear regression

The RMSE was 4.91 calibrated by SLR and 4.65 by MLR
(Table 2). The r value was 0.74 by SLR and 0.77 by MLR.

Atmos. Meas. Tech., 13, 1693–1707, 2020 www.atmos-meas-tech.net/13/1693/2020/



M. Si et al.: Evaluation and calibration of a low-cost particle sensor in ambient conditions 1703

Figure 11. Comparison between the NN predictions and SHARP. Based on 610 test examples. Panel (a) is in full scale. Panel (b) is a zoom-in
plot of panel (a). The solid blue line is a regression line. The yellow dashed line is a 1 : 1 line. The green circle represents data density. The
grey area along the regression line represents 1 standard deviation.

Figure 12. Comparison between the XGBoost predictions and SHARP. Based on 610 test examples. NN: neural network. Panel (a) is in full
scale. Panel (b) is a zoom-in plot of panel (a). The solid blue line is a regression line. The yellow dashed line is a 1 : 1 line. The green circle
represents data density. The grey area along the regression line represents 1 standard deviation.

The p values in the F–K test by the SLR and MLR were less
than 0.05, which suggested that the variances of the PM2.5
values were statistically significantly different.

3.3 Calibration by XGBoost

The hyperparameters selected by the random search for the
best model using XGBoost are presented in Table 3.

In the training dataset, the RMSE was 3.03, and the MAE
was 1.93 by the best XGBoost model. The RMSE in the test
dataset was reduced by 57.8 % using the XGBoost from 9.93

by the sensor to 4.19 (Table 4). The p value in the F–K test
using the test dataset was 0.7256, which showed no evidence
that the PM2.5 values varied with statistical significance be-
tween the XGBoost-predicted values and SHARP-measured
values.

3.4 Calibration by neural network

The hyperparameters for the best NN model are presented in
Table 5.
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Table 3. Hyperparameters for the best XGBoost model.

XGBoost hyperparameters Values

Number of trees to fit (n_estimator) 37
Maximum depth of a tree (max_depth) 9
Step size shrinkage used in an update (learning_rate) 0.33
Subsample ratio of columns when constructing each tree (colsample_bytree) 0.83
Minimum loss reduction required to make a further partition on a leaf node of the tree (gamma) 6.36
L2 regularization on weights (reg_lambda) 33.08
Minimum sum of instance weight needed in a child (min_child_weight) 25.53

Table 4. Table 4: calibration results by XGBoost using the test
dataset.

Criteria Low-cost sensor XGBoost

RMSE 9.93 4.19
MSE 98.62 17.61
MAE 5.63 2.63
Pearson r 0.74 0.82
p value in the F–K test 7.062× 10−09 0.7256

Note: the test dataset contains 610 examples.

Table 5. Hyperparameters for the best neural network model.

NN hyperparameters Values

Learning_rate 0.001
L2 regularization 0.01
Numbers of hidden layer(s) 5
Numbers of units in the hidden layer(s) 32-32-32-32-32
Optimization method Nadam
Epochs 100

In the training dataset, the RMSE was 3.22, and the MAE
was 2.17 by the best NN-based model. The RMSE was re-
duced by 60 % using the NN from 9.93 to 3.91 in the test
dataset (Table 6). The p value in the F–K test was 0.43, which
suggested that the variances in the PM2.5 values were not
statistically significantly different between the NN-predicted
values and SHARP-measured values.

3.5 Discussion

3.5.1 Relative humidity impact

RH has significant effects on the low-cost sensor’s responses.
The RH trend matched the low-cost sensor’s PM2.5 trend
closely. The spikes in the low-cost sensor’s PM2.5 trend cor-
responded with increases in RH values, and the low-cost sen-
sor tended to produce inaccurately high PM2.5 values when
RH suddenly increased (Fig. 5). However, the relationship
between PM2.5 and RH was not linear (Fig. 7)

Table 6. Calibration results by the neural network using the test
dataset.

Criteria Low-cost sensor Neural network

RMSE 9.93 3.91
MSE 98.62 15.26
MAE 5.63 2.38
Pearson r 0.74 0.85
p value in the F–K test 7.062× 10−09 0.43

Note: the test dataset includes 610 examples.

Table 7. Descriptive statistics by season.

Season Sample size (n) Mean1 Standard deviation

Winter 78 5.13 6.95
Spring 57 4.76 6.45

Note: (1) the mean is calculated by
∑n
i=1(| (sensordaily − SHARPdaily)|)/n.

3.5.2 Seasonal impact

We assessed the seasonal impact on the low-cost sensor
by comparing the means of absolute differences between
the daily average of sensor values and the daily average of
SHARP values in winter (December 2018 to February 2019)
and spring (March 2019 to April 2019). A descriptive statis-
tic is presented in Table 7.

We used a two-sample t test to assess whether the means of
absolute differences for winter and spring were equal. The p
value of the t test was 0.754. Because P = 0.754>α = 0.05,
we retained the null hypothesis. There was not sufficient evi-
dence at the α = 0.05 level to conclude that the means of ab-
solute differences between the low-cost sensor and SHARP
values were significantly different for winter and spring.

3.5.3 Calibration assessment

Descriptive statistics of the PM2.5 concentrations in the test
dataset for SHARP, the low-cost sensor, XGBoost, NN, SLR,
and MLR are presented in Table 8. The arithmetic mean of
the PM2.5 concentrations measured by the low-cost sensor
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Table 8. Descriptive statistics of PM2.5 concentrations using the test dataset.

PM2.5 concentration (µg m−3) SHARP Low-cost sensor XGBoost NN SLR MLR

Minimum 0.00 0.00 0.00 0.19 2.49 0
First quartile 2.00 0.083 2.09 1.78 2.83 3.27
Median 4.00 4.00 4.98 4.16 4.13 4.79
Mean 6.44 9.44 6.40 6.09 6.37 6.42
Third quartile 8.00 11.94 8.61 8.20 7.39 7.18
Maximum 49.00 103.33 39.94 47.19 44.97 48.56
SD 7.32 13.53 6.03 6.23 5.57 5.67

was 9.44 µg m−3. In contrast, the means of the PM2.5 concen-
trations were 6.44 µg m−3 by SHARP, 6.40 µg m−3 by XG-
Boost, and 6.09 µg m−3 by NN.

NN and XGBoost produced data distributions that were
similar to SHARP (Fig. 8). SLR had the worst performance.
Fig. 9 shows that SLR could not predict low concentrations.
The predictions made by NN and XGBoost ranged from 0.19
to 47.19 µg m−3 and from 0.00 to 39.94 µg m−3.

In the test dataset, the NN produced the lowest MAE of
2.38 (Fig. 10). The MAEs were 2.63 by XGBoost, 3.09 by
MLR, and 3.21 by SLR when compared with the PM2.5 data
measured by the SHARP instrument. The NN also had the
lowest RMSE score in the test dataset. The RMSEs were
3.91 for the NN, 4.19 for XGBoost, and 9.93 for the low-
cost sensor (Fig. 10). The Pearson r value by the NN was
0.85 compared to 0.74 by the low-cost sensor.

The XGBoost and NN machine-learning algorithms have
a better performance compared to traditional SLR and MLR
calibration methods. NN calibration reduced the RMSE by
60 %. Both NN and XGBoost demonstrated the ability to cor-
rect the bias for high concentrations made by the low-cost
sensor (Figs. 11 and 12). Most of the values that were greater
than 10 µg m−3 in the NN model fall closer to the yellow
1 : 1 line (Fig. 11). NN had slightly better performance for
low concentrations compared to XGBoost.

4 Conclusions

In this study, we evaluated one low-cost sensor against a ref-
erence instrument – SHARP – using 3050 hourly data points
from 00:00 on 7 December 2018 to 23:00 on 26 April 2019.
The p value from the F–K test suggested that the variances
in the PM2.5 values were statistically significantly different
between the low-cost sensor and the SHARP instrument.
Based on the 24 h rolling average, the low-cost sensor in this
study tended to report higher PM2.5 values compared to the
SHARP instrument. The low-cost sensor had a strong bias
when PM2.5 concentrations were greater than 10 µg m−3. The
study also showed that the sensor’s bias responses are likely
caused by the sudden changes in RH.

Four calibration methods were tested and compared: SLR,
MLR, NN, and XGBoost. The p values from the F–K tests

for the XGBoost and NN were greater than 0.05, which indi-
cated that, after calibration by the XGBoost and the NN, the
variances of the PM2.5 values were not statistically signifi-
cantly different from the variance of the PM2.5 values mea-
sured by the SHARP instrument. In contrast, the p values
from the F–K tests for the SLR and MLR were still less than
0.05. The NN generated the lowest RMSE score in the test
dataset with 610 samples. The RMSE by NN was 3.91, the
lowest of the four methods. RMSEs were 4.91 by SLR, 4.65
by MLR, and 4.19 by XGBoost.

However, a wide installation of low-cost sensors may still
face challenges, including the following.

– Durability of the low-cost sensor. The low-cost sensor
used in the study was deployed in the ambient envi-
ronment. We installed four sensors between 7 Decem-
ber 2018 and 20 June 2019. Only one sensor lasted ap-
proximately 5 months; the data from this sensor were
used in this study. The other three sensors only lasted
2 weeks to 1 month and collected limited data. These
three sensors did not collect enough data for machine
learning and were therefore not used in this study.

– Missing data. In this study, the low-cost sensor dataset
has 299 missing values for PM2.5 concentrations. The
reason for the missing data is unknown.

– Transferability of machine-learning models. The mod-
els developed by the two more powerful machine-
learning algorithms that were used to calibrate the low-
cost sensor data tend to be sensor-specific because of the
nature of machine learning. Further research is needed
to test the transferability of the models for broader use.
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(Si, 2019).

Author contributions. MS conducted the evaluation and calibra-
tions. YX installed the sensor and monitored and collected the sen-
sor data. MS and YX wrote the paper together and made an equal
contribution. SD edited the machine-learning methods. KD secured

www.atmos-meas-tech.net/13/1693/2020/ Atmos. Meas. Tech., 13, 1693–1707, 2020

https://doi.org/10.5281/zenodo.3473833


1706 M. Si et al.: Evaluation and calibration of a low-cost particle sensor in ambient conditions

the funding and supervised the project. All authors discussed the
results and commented on the paper.

Competing interests. The authors declare that they have no conflict
of interest.

Disclaimer. Reference to any companies or specific commercial
products does not constitute endorsement or recommendation by
the authors.

Acknowledgements. The authors wish to thank SensorUp for pro-
viding the low-cost sensors and the Calgary Region Airshed Zone
air quality program manager Mandeep Dhaliwal for helping with
the installation of the PM sensors and a 4G LTE router, as well as
the collection of the SHARP data. The authors would also like to
thank Jessica Coles for editing an earlier version of this paper.

Financial support. This research has been supported by the Natural
Sciences and Engineering Research Council of Canada (grant nos.
EGP 521823–17 and CRDPJ 535813-18).

Review statement. This paper was edited by Keding Lu and re-
viewed by four anonymous referees.

References

Bergstra, J. and Bengio, Y.: Random Search for Hyper-Parameter
Optimization, J. Mach. Learn. Res., 13, 281–305, 2012.

CDNova Instrument Ltd.: SHARP Cost Estimate, Calgary, Canada,
2017.

Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D.,
Coakley, J. A., Hansen, J. E., and Hofmann, D. J.: Climate
Forcing by Anthropogenic Aerosols, Science, 255, 423–430,
https://doi.org/10.1126/science.255.5043.423, 1992.

Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting
System, in: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining
– KDD ’16, 785–794, ACM Press, San Francisco, California,
USA, 2016.

Chong, C.-Y. and Kumar, S. P.: Sensor networks: Evolution,
opportunities, and challenges, Proc. IEEE, 91, 1247–1256,
https://doi.org/10.1109/JPROC.2003.814918, 2003.

Chow, J. C. and Watson, J. G.: Guideline on Speciated Partic-
ulate Monitoring, available at: https://www3.epa.gov/ttn/amtic/
files/ambient/pm25/spec/drispec.pdf (last access: 17 Septem-
ber 2019), 1998.

Conover, W. J., Johnson, M. E., and Johnson, M. M.: A Comparative
Study of Tests for Homogeneity of Variances, with Applications
to the Outer Continental Shelf Bidding Data, Technometrics,
23, 351–361, https://doi.org/10.1080/00401706.1981.10487680,
1981.

Cordero, J. M., Borge, R., and Narros, A.: Using statisti-
cal methods to carry out in field calibrations of low cost
air quality sensors, Sensor Actuat. B-Chem., 267, 245–254,
https://doi.org/10.1016/j.snb.2018.04.021, 2018.

DeCicco, L.: Exploring ggplot2 boxplots – Defining limits and
adjusting style, available at: https://owi.usgs.gov/blog/boxplots/
(last access: 18 September 2019), 2016.

de Smith, M.: Statistical Analysis Handbook, 2018 Edition, The
Winchelsea Press, Drumlin Security Ltd, Edinburgh, available
at: http://www.statsref.com/HTML/index.html?fligner-killeen_
test.html (last access: 7 September 2019), 2018.

De Vito, S., Massera, E., Piga, M., Martinotto, L., and Di
Francia, G.: On field calibration of an electronic nose
for benzene estimation in an urban pollution monitor-
ing scenario, Sensor Actuat. B-Chem., 129, 750–757,
https://doi.org/10.1016/j.snb.2007.09.060, 2008.

De Vito, S., Piga, M., Martinotto, L., and Di Francia, G.:
CO, NO2 and NOx urban pollution monitoring with on-
field calibrated electronic nose by automatic bayesian
regularization, Sensor Actuat. B-Chem., 143, 182–191,
https://doi.org/10.1016/j.snb.2009.08.041, 2009.

De Vito, S., Esposito, E., Salvato, M., Popoola, O., Formisano,
F., Jones, R., and Di Francia, G.: Calibrating chemi-
cal multisensory devices for real world applications: An
in-depth comparison of quantitative machine learning
approaches, Sensor Actuat. B-Chem., 255, 1191–1210,
https://doi.org/10.1016/j.snb.2017.07.155, 2018.

DigitalGlobe: ESRI World Imagery Basemap Service, Environ-
mental Systems Research Institute (ESRI), Redlands, California
USA, 2019.

Esposito, E., De Vito, S., Salvato, M., Bright, V., Jones, R. L.,
and Popoola, O.: Dynamic neural network architectures for
on field stochastic calibration of indicative low cost air qual-
ity sensing systems, Sensor Actuat. B-Chem., 231, 701–713,
https://doi.org/10.1016/j.snb.2016.03.038, 2016.

Fligner, M. A. and Killeen, T. J.: Distribution-Free Two-
Sample Tests for Scale, J. Am. Stat. Assoc., 71, 210–213,
https://doi.org/10.1080/01621459.1976.10481517, 1976.

Government of Canada: National Air Pollution Surveillance
(NAPS) Network – Open Government Portal, Natl. Air Pollut.
Surveill. NAPS Netw., available at: https://open.canada.ca/data/
en/dataset/1b36a356-defd-4813-acea-47bc3abd859b, last ac-
cess: 17 September 2019.

Holstius, D. M., Pillarisetti, A., Smith, K. R., and Seto, E.: Field
calibrations of a low-cost aerosol sensor at a regulatory mon-
itoring site in California, Atmos. Meas. Tech., 7, 1121–1131,
https://doi.org/10.5194/amt-7-1121-2014, 2014.

Jayaratne, R., Liu, X., Thai, P., Dunbabin, M., and Morawska, L.:
The influence of humidity on the performance of a low-cost
air particle mass sensor and the effect of atmospheric fog, At-
mos. Meas. Tech., 11, 4883–4890, https://doi.org/10.5194/amt-
11-4883-2018, 2018.

Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet classifi-
cation with deep convolutional neural networks, Commun ACM,
60, 84–90, 2017.

Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M.,
Di Sabatino, S., Bell, M., Norford, L., and Britter, R.: The rise of
low-cost sensing for managing air pollution in cities, Environ.

Atmos. Meas. Tech., 13, 1693–1707, 2020 www.atmos-meas-tech.net/13/1693/2020/

https://doi.org/10.1126/science.255.5043.423
https://doi.org/10.1109/JPROC.2003.814918
https://www3.epa.gov/ttn/amtic/files/ambient/pm25/spec/drispec.pdf
https://www3.epa.gov/ttn/amtic/files/ambient/pm25/spec/drispec.pdf
https://doi.org/10.1080/00401706.1981.10487680
https://doi.org/10.1016/j.snb.2018.04.021
https://owi.usgs.gov/blog/boxplots/
http://www.statsref.com/HTML/index.html?fligner-killeen_test.html
http://www.statsref.com/HTML/index.html?fligner-killeen_test.html
https://doi.org/10.1016/j.snb.2007.09.060
https://doi.org/10.1016/j.snb.2009.08.041
https://doi.org/10.1016/j.snb.2017.07.155
https://doi.org/10.1016/j.snb.2016.03.038
https://doi.org/10.1080/01621459.1976.10481517
https://open.canada.ca/data/en/dataset/1b36a356-defd-4813-acea-47bc3abd859b
https://open.canada.ca/data/en/dataset/1b36a356-defd-4813-acea-47bc3abd859b
https://doi.org/10.5194/amt-7-1121-2014
https://doi.org/10.5194/amt-11-4883-2018
https://doi.org/10.5194/amt-11-4883-2018


M. Si et al.: Evaluation and calibration of a low-cost particle sensor in ambient conditions 1707

Int., 75, 199–205, https://doi.org/10.1016/j.envint.2014.11.019,
2015.

LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521,
436–444, https://doi.org/10.1038/nature14539, 2015.

Lewis, A. C., Lee, J. D., Edwards, P. M., Shaw, M. D., Evans, M. J.,
Moller, S. J., Smith, K. R., Buckley, J. W., Ellis, M., Gillot, S. R.,
and White, A.: Evaluating the performance of low cost chemical
sensors for air pollution research, Faraday Discuss., 189, 85–103,
https://doi.org/10.1039/C5FD00201J, 2016.

Lin, Y., Dong, W., and Chen, Y.: Calibrating Low-Cost Sensors by a
Two-Phase Learning Approach for Urban Air Quality Measure-
ment, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,
2, 1–18, https://doi.org/10.1145/3191750, 2018.

Loh, B. G. and Choi, G.-H.: Calibration of Portable Particu-
late Matter – Monitoring Device using Web Query and Ma-
chine Learning, Saf. Health Work, 10, S2093791119302811,
https://doi.org/10.1016/j.shaw.2019.08.002, 2019.

Maag, B., Zhou, Z., and Thiele, L.: A Survey on Sensor Calibration
in Air Pollution Monitoring Deployments, IEEE Internet Things
J., 5, 4857–4870, https://doi.org/10.1109/JIOT.2018.2853660,
2018.

Natural Resources Canada: Administrative Boundaries
in Canada – CanVec Series – Administrative Fea-
tures, available at: https://open.canada.ca/data/en/dataset/
306e5004-534b-4110-9feb-58e3a5c3fd97, last access:
5 March 2020.

Papapostolou, V., Zhang, H., Feenstra, B. J., and Polidori,
A.: Development of an environmental chamber for evalu-
ating the performance of low-cost air quality sensors un-
der controlled conditions, Atmos. Environ., 171, 82–90,
https://doi.org/10.1016/j.atmosenv.2017.10.003, 2017.

Patashnick, H. and Rupprecht, E. G.: Continuous PM10 Mea-
surements Using the Tapered Element Oscillating Mi-
crobalance, J. Air Waste Manag. Assoc., 41, 1079–1083,
https://doi.org/10.1080/10473289.1991.10466903, 1991.

RStudio: Why Use Keras?, available at: https://keras.rstudio.com/
articles/why_use_keras.html, last access: 11 November 2018.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning rep-
resentations by back-propagating errors, Nature, 323, 533–536,
https://doi.org/10.1038/323533a0, 1986.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and
physics: from air pollution to climate change, Wiley, New York,
1998.

Si, M.: Evaluation and Calibration of a Low-cost Particle Sensor in
Ambient Conditions Using Machine Learning Methods (Version
v0), Data set, Zenodo, https://doi.org/10.5281/zenodo.3473833,
2019.

Si, M., Tarnoczi, T. J., Wiens, B. M., and Du, K.: Develop-
ment of Predictive Emissions Monitoring System Using Open
Source Machine Learning Library – Keras: A Case Study
on a Cogeneration Unit, IEEE Access, 7, 113463–113475,
https://doi.org/10.1109/ACCESS.2019.2930555, 2019.

Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D.,
Williams, R. W., Hagler, G. S. W., Shelow, D., Hindin, D. A.,
Kilaru, V. J., and Preuss, P. W.: The Changing Paradigm of Air
Pollution Monitoring, Environ. Sci. Technol., 47, 11369–11377,
https://doi.org/10.1021/es4022602, 2013.

Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., and
Bonavitacola, F.: Field calibration of a cluster of low-cost

available sensors for air quality monitoring. Part A: Ozone
and nitrogen dioxide, Sensor Actuat. B-Chem., 215, 249–257,
https://doi.org/10.1016/j.snb.2015.03.031, 2015.

Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., and
Bonavitacola, F.: Field calibration of a cluster of low-cost com-
mercially available sensors for air quality monitoring. Part B:
NO, CO and CO2, Sensor Actuat. B-Chem., 238, 706–715,
https://doi.org/10.1016/j.snb.2016.07.036, 2017.

Timbers, F.: Random Search for Hyper-Parameter Opti-
mization, Finbarr Timbers, available at: https://finbarr.ca/
random-search-hyper-parameter-optimization/ (last access:
4 October 2019), 2017.

US EPA: List of designated reference and equivalent methods,
available at: https://www3.epa.gov/ttnamti1/files/ambient/
criteria/AMTICListDec2016-2.pdf (last access: 7 Octo-
ber 2019), 2016.

Wang, Y., Li, J., Jing, H., Zhang, Q., Jiang, J., and
Biswas, P.: Laboratory Evaluation and Calibration of
Three Low-Cost Particle Sensors for Particulate Mat-
ter Measurement, Aerosol Sci. Technol., 49, 1063–1077,
https://doi.org/10.1080/02786826.2015.1100710, 2015.

White, R., Paprotny, I., Doering, F., Cascio, W., Solomon, P., and
Gundel, L.: Sensors and “apps” for community-based: Atmo-
spheric monitoring, EM Air Waste Manag. Assoc. Mag. Environ.
Manag., 36–40, 2012.

Williams, R., Kaufman, A., Hanley, T., Rice, J., and Gar-
vey, S.: Evaluation of Field-deployed Low Cost PM Sen-
sors, U.S. Environmental Protection Agency, available
at: https://cfpub.epa.gov/si/si_public_record_report.cfm?
Lab{\textdollar}={\textdollar}NERL&DirEntryId=297517 (last
access: 17 September 2019), 2014.

XGBoost developers: XGBoost Parameters – xgboost
1.0.0-SNAPSHOT documentation, available at: https:
//xgboost.readthedocs.io/en/latest/parameter.html (last access:
24 January 2020), 2019.

Xiong, Y., Zhou, J., Schauer, J. J., Yu, W., and Hu, Y.:
Seasonal and spatial differences in source contributions to
PM2.5 in Wuhan, China, Sci. Total Environ., 577, 155–165,
https://doi.org/10.1016/j.scitotenv.2016.10.150, 2017.

Zheng, A.: Evaluating Machine Learning Models, First Edition.,
O’Reilly Media, Inc., 1005 Gravenstein Highway North, Se-
bastopol, CA, 2015.

Zheng, T., Bergin, M. H., Johnson, K. K., Tripathi, S. N., Shirod-
kar, S., Landis, M. S., Sutaria, R., and Carlson, D. E.: Field
evaluation of low-cost particulate matter sensors in high- and
low-concentration environments, Atmos. Meas. Tech., 11, 4823–
4846, https://doi.org/10.5194/amt-11-4823-2018, 2018.

Zikova, N., Hopke, P. K., and Ferro, A. R.: Evaluation
of new low-cost particle monitors for PM2.5 concen-
trations measurements, J. Aerosol Sci., 105, 24–34,
https://doi.org/10.1016/j.jaerosci.2016.11.010, 2017.

Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk,
A., Robinson, E. S., Robinson, A. L., and Subramanian, R.: A
machine learning calibration model using random forests to im-
prove sensor performance for lower-cost air quality monitoring,
Atmos. Meas. Tech., 11, 291–313, https://doi.org/10.5194/amt-
11-291-2018, 2018.

www.atmos-meas-tech.net/13/1693/2020/ Atmos. Meas. Tech., 13, 1693–1707, 2020

https://doi.org/10.1016/j.envint.2014.11.019
https://doi.org/10.1038/nature14539
https://doi.org/10.1039/C5FD00201J
https://doi.org/10.1145/3191750
https://doi.org/10.1016/j.shaw.2019.08.002
https://doi.org/10.1109/JIOT.2018.2853660
https://open.canada.ca/data/en/dataset/306e5004-534b-4110-9feb-58e3a5c3fd97
https://open.canada.ca/data/en/dataset/306e5004-534b-4110-9feb-58e3a5c3fd97
https://doi.org/10.1016/j.atmosenv.2017.10.003
https://doi.org/10.1080/10473289.1991.10466903
https://keras.rstudio.com/articles/why_use_keras.html
https://keras.rstudio.com/articles/why_use_keras.html
https://doi.org/10.1038/323533a0
https://doi.org/10.5281/zenodo.3473833
https://doi.org/10.1109/ACCESS.2019.2930555
https://doi.org/10.1021/es4022602
https://doi.org/10.1016/j.snb.2015.03.031
https://doi.org/10.1016/j.snb.2016.07.036
https://finbarr.ca/random-search-hyper-parameter-optimization/
https://finbarr.ca/random-search-hyper-parameter-optimization/
https://www3.epa.gov/ttnamti1/files/ambient/criteria/AMTIC List Dec 2016-2.pdf
https://www3.epa.gov/ttnamti1/files/ambient/criteria/AMTIC List Dec 2016-2.pdf
https://doi.org/10.1080/02786826.2015.1100710
https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab{\textdollar}={\textdollar}NERL&DirEntryId=297517
https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab{\textdollar}={\textdollar}NERL&DirEntryId=297517
https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/parameter.html
https://doi.org/10.1016/j.scitotenv.2016.10.150
https://doi.org/10.5194/amt-11-4823-2018
https://doi.org/10.1016/j.jaerosci.2016.11.010
https://doi.org/10.5194/amt-11-291-2018
https://doi.org/10.5194/amt-11-291-2018

	Abstract
	Introduction
	Method
	Data preparation
	Low-cost sensor evaluation
	Calibration
	Simple linear regression and multiple linear regression
	XGBoost
	Neural network


	Results and discussion
	Sensor evaluation
	Hourly data
	24h rolling average data

	Calibration by simple linear regression and multiple linear regression
	Calibration by XGBoost
	Calibration by neural network
	Discussion
	Relative humidity impact
	Seasonal impact
	Calibration assessment


	Conclusions
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

