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ABSTRACT The study provides an overview of Predictive Emissions Monitoring System’s (PEMS)
research, application, installation, and regulatory framework as well as develops predictive models for NOy
emissions from a natural gas fired cogeneration unit using an open source machine learning library, Keras,
and open source programming languages, Python and R. Nine neural network based predictive models were
trained with 12 086 examples and tested with 3020 examples. The neural network-based models use eight
process parameters as inputs to predict NOy emissions. All models meet the regulatory requirements for
precision. The best model (32-64-64-64) has four hidden layers and uses the Nadam method for optimization.
The best model has a mean absolute error of 0.5982, r-value of 0.9451, and a difference of 0.14% between
the measured and predicted emission values using the test dataset. The study demonstrated the feasibility
of using open source machine learning library in PEMS development. It also provides guidance to facility
operators to develop their own PEMS models for monitoring emissions.

INDEX TERMS Air emissions monitoring, environmental monitoring, Keras, machine learning, NOy,
PEMS, predictive emissions monitoring system, tensorflow.

I. INTRODUCTION

The Predictive Emissions Monitoring System (PEMS) was
developed as an alternative to overcome the drawbacks of the
Continuous Emissions Monitoring System (CEMS), such as
high initial capital cost, high operating cost, maintenance and
operator training [1].

A PEMS relies on using the operating parameters of com-
bustion facilities through first principle, statistical or Arti-
ficial Intelligence (AI) methods to build a model that can
predict emissions. Historical paired emissions and selected
process data (e.g., load, fuel composition, flow, pressure
and temperature data, environmental conditions, turbine and
boiler settings) are used to generate a model to determine the
plant emissions.
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The capital costs for PEMS are estimated to be 50% less
than for CEMS, and the operations and maintenance costs
are approximately 10-20% of the CEMS cost [2], [3]. The
application of the PEMS includes a) compliance reporting,
b) offline what-if analysis, c) analyzer availability enhance-
ment and d) continuous estimating when CEMS is offline [4].

There are a few commercial PEMS providers, such as
Rockwell Automation, ABB and CMC Solutions. However,
on-site training is required, and ongoing support from the
software providers is often needed to adjust PEMS. The
software licensing can be complicated or cost prohibitive for
wide installations of PEMS.

This paper compiles PEMS research and application and
summarizes the regulatory framework for PEMS in the
United States and Europe. This paper also presents a case
study of model development for monitoring oxides of nitro-
gen (NOy) using an open source machine learning library,
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Keras. Keras is a high-level neural network Application Pro-
gramming Interface (API). The objective of this case study is
to provide enough knowledge to facility operators to develop
their own PEMS. The study is the first to test the predictive
models with Rectified Linear Units (ReLLU) as the activation
function in accordance with the regulatory requirements for
precision. Most existing neural network based PEMS models
use Sigmoid as the activation function, which results in slow
computation and vanishing gradient problems [5].

Section II of this paper provides an overview of PEMS
research, application and installations to date based on pub-
licly available information. Section III presents a case study
of PEMS development using Keras and its Python and R inter-
faces. Section IV presents the results from the case study.
Section V gives conclusions on the performance of the pre-
dicted models and discusses the challenges of developing
a PEMS.

Il. PEMS OVERVIEW

A. METHODS FOR PEMS DEVELOPMENT

To date, the methods used to develop PEMS can be grouped
into three broad categories:

1. First Principle: This method uses analytical physical equa-
tions from thermodynamics, kinetics, mass and energy
balance.

2. Statistical: This method explores the statistical relation-
ships between operating parameters and corresponding
pollutants emissions. Process dynamics (first principle) is
often considered in the statistical model. It is sometimes
referred to as the Statistical Hybrid Model.

3. Machine Learning: This method uses machine learning
techniques to build predictive models using operating
parameters. Neural network is the most widely used
machine learning algorithm for PEMS development.

The statistical method focuses on confirmatory inference,
which achieves emissions prediction by creating and fitting
an emissions probability model [6]. The model finds relation-
ships between variables and predicted emissions, as well as
computes a quantitative emission rate of confidence. In sta-
tistical modeling, the operating and emissions data guide the
selection of a stochastic model that serves as the abstraction
for making emissions predictions.

Machine learning is a subset of Al; it gives computers
“the ability to learn without being explicitly programmed,”
defined by Arthur Samuel in 1959 [7]. In contrast to
the statistical method, the machine learning method uses
learning algorithms to find regularities in the historical
paired operating and emissions data to predict emissions.
PEMS is one of the first Al applications in environmental
monitoring.

Both statistical and machine learning methods use his-
torical data to develop prediction models. In some research
papers, the two methods are combined into one category,
referred to as the data-driven method [8], [9].

113464

B. REGULATORY FRAMEWORK

Although PEMS is used for environmental monitoring world-
wide, the major regulatory frameworks for PEMS were devel-
oped by the United States Environmental Protection Agency
(US EPA) and the European Union. Many countries outside of
the US and Europe have adopted these standards, especially
the US EPA’s PEMS certification standards. The main US
federal regulation that accepts PEMS as an emission moni-
toring and reporting tool is Title 40 of the Code of Federal
Regulations (CFR 40):

o Part 60 - Standards of Performance for New Stationary
Sources

o Part 61 - National Emission Standards for Hazardous Air
Pollutants

o Part 63 - National Emission Standards for Hazardous Air
Pollutants for Source Categories

In March 2009, the Performance Specification (PS16) for
PEMS was published by the US EPA [10]. The PEMS per-
formance must meet the requirement set out in the PS16.
In addition, an electrical generating facility can apply PEMS
as an alternative monitoring system under CFR 40, Part 75,
Subpart E, §75.40-75.48. The requirements in PS16 and
Part 75 are consistent.

PEMS predicted values (e.g., NOy emission rates) need
to be compared with the data obtained from the reference
method (RM) to demonstrate the model accuracy. The RM
includes CEMS or field measurement. The US EPA’s require-
ments for PEMS, including precision, reliability, accessibility
and quality assurance and quality control (QA/QC), are sum-
marized in Table 1.

If the emission rates change significantly from the previ-
ous PEMS training conditions (e.g., operating conditions of
the equipment) or if a PEMS fails a relative accuracy test
audit (RATA), the US EPA requires the PEMS to be re-trained
and re-certified [11], [12].

In Europe, The Netherlands, Denmark and the United
Kingdom accept using PEMS for emissions monitoring and
compliance reporting [9]. A technical specification (TS)
for PEMS applicability, execution and quality assurance
(CEN/TS 17198:2018) was published by European Com-
mittee Standardization (CEN) in August 2018 [13]. The
functionality requirements for PEMS operation and quality
assurance are summarized in Table 2.

The TS outlines the performance requirements for the
emission model’s applicability, completeness, uncertainty,
sensitivity, validation, availability and reproducibility. The
uncertainty requirements for PEMS are not included in
the TS, and it refers to legislative requirements for a spe-
cific plant. The only specified PEMS performance require-
ments in the TS are greater than or equal to 95% of
availability and 8% of emission limit value for repro-
ducibility. The requirements for applicability, completeness
and sensitivity are based on the PEMS manufacturer’s
specifications.
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TABLE 1. Requirements for PEMS by EPA under 40 CFR Part 75.

Requirement Criteria
t-test : daye < |cc]
Mean difference between RM and PEMS (d,,) is less
than or equal to the absolute value of confidence
coefficient (CC) at 97.5% one-sided confident inter-
val.
Otherwise, a bias factor needs to be applied to the
Precision PEMS predicted values.
Coefficient correlation r > 0.8
Correlation between RM and PEMS must be 0.8 or
greater.
F-test, F- value < Fjica
The variance ratio of PEMS and RM must be less or
equal to Fcal value.
Reliability Availability > 95%
Accessibility Record keeping according to 40 CFR Part 75 Subpart

and Timeli- F
ness Reporting according to 40 CFR Part 75 Subpart G

PEMS input parameters must be operating within
permitted operating ranges.
Daily QA/QC check

Instrumentations of the input parameters must be

QA maintained in accordance with the manufacturer’s

recommendation.

Alarm system for PEMS out of control
Relative Accuracy (RA), less than 10% of average
RM values.

TABLE 2. Functionality requirements for PEMS by CEN.

Requirement Criteria

Reading and validating sensors; performing emis-
sion model integrity tests; predicting emissions;
Functionality displaying PEMS operating status, sensor read-
ings and sensor validation; equipping with an

alarm system

Capabilities Hardware failure, power outrage, and communi-
cation line failures
Protection Unauthorized access and log for modification

C. PEMS RESEARCH

The first PEMS was developed in 1973 and published
in 1975 [14]. It used operating parameters of combustion
facilities, through thermodynamics, to construct a polynomial
equation. The model was used to monitor NOx emissions
from three gas turbines. In early 1980s, the model was coded
into a computer program to simulate a NOy control system
for three 7 MW gas turbines and was run in parallel with a
certified CEMS for over 10 years [15]. Since 1990, the PEMS
studies and commercial applications for various sources and
industries have been widely researched.
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Kamas and Keeler [16] tested two PEMS on two cement
kilns in 1995 by comparing PEMS with CEMS. One PEMS
was used to monitor NOy and SO, at kiln No. 1, which used
coal fuel. The other PEMS monitored NOy at kiln No. 2,
which used waste-derived fuel. The R? values between pre-
dicted and CEMS measured NOy data were 0.91 and 0.87 for
the two kilns. The R? value for SO, prediction was 0.8.

Harnevie et al. [17] studied the first principle based PEMS
on a biomass-fired power plant in Sweden in 1996, and
concluded that a PEMS is suitable for emission monitoring
for biomass-fired plants, even if the biomass fuel has varying
water content.

Cooper and Andreasson [18] monitored NOy for one year
in 1997-1998 using a PEMS in parallel with a CEMS for a
passage ferry in Sweden. The PEMS was developed using the
first principle method, and the relative accuracy was 6.7%,
compared to the CEMS monitoring data.

Faravelli et al. [19] used a kinetic model to predict NOx
from industrial boilers in 2000. The predicted NOx value has
a 2% difference from the measured value.

Chien et al. [20] analyzed NOx and CO using a two-layer
neural network PEMS for a simulated coal-fired boiler. The
PEMS was used to explore the process optimization for NOy
and CO reduction.

Lee et al. [21] used integrated multiblock partial least-
squares model for NOy prediction to identify the root
causes of excessive NOy emissions and heater malfunc-
tion in large-scale multi-heater systems in 2005. The model
used 187 process parameters and was developed based on
9,182 gas samples at sampling intervals of 5 minutes. The
root-mean-squared error of predictions by the model was
5.640 ppm, or 3.7% of the average value.

Reifman er al. [22] investigated the application of PEMS
for controlling the spatial distribution and total rate of injec-
tion of natural gas of the fuel-lean gas reburn system for
NOy control in coal-fired boilers in 2000. The neural net-
work based PEMS was used to understand the relationships
between the distribution of the injected natural gas in the
upper region of the furnace and the average NOy exiting the
furnace. The PEMS model was developed based on 20 tests
and could predict NOy within the measurement uncertainties.

Chien et al. [20] developed a PEMS using the first
principle method and tested it on a cogeneration unit at
Hsinta power station in Taiwan for NOy and O, monitoring
in 2003. The cogeneration unit contained three gas turbines
(90 MW) equipped with one heat recovery steam generator
(HRSG) (170 MW). The model did not meet the EPA’s draft
PS16 requirement for PEMS. In 2005, Chien et al. updated
the PEMS using the statistical method and tested it on the
same cogeneration units. The relative accuracies (RA) are
3.38-14.77% and the correlation coefficients are 0.955-0.989
between the best model and the CEMS [23]. This statistical
model met the draft PS16 requirements. In 2010, Chien et al.
applied the same model to the same size and type cogenera-
tion unit but at a different power station, Nanpo station, and
concluded that the statistical model could not be transferred
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from one piece of equipment to another due to differences
in equipment condition, operating model, maintenance and
other parameters. [24].

Saiepour et al. [8] developed PEMS models using multi-
variate statistical techniques for CO monitoring from a coke
oven plant in the UK in 2004. The model was based on over
15 days of operating data and met the US EPA requirements.
Bias adjustments were needed for low emission level and high
emission level. No bias adjustment was needed for normal
emission level.

Ross et al. [25] tested PEMS for NOy monitoring at a glass
manufacturing furnace based on periodic monitoring with a
portable chemical cell gas analyzer in 2008. The predictive
calculations were accepted by air emission control agencies
for demonstrating regulation compliance.

Botros et al. [26]-[28] developed neural network based
NOy predictive models for three gas turbine engines in natural
gas compressor stations in Alberta, Canada, from 2008 to
2010. The models include four or seven process parameters as
inputs, one single hidden layer with two units, and one output
for NOy emissions. The Sigmoid activation function was used
for the models. The purpose of the NOy predictive models
was to compare the predictive NOy values with the US EPA’s
NOy emission factors.

Tan et al. [29] developed a NOyx prediction model using
an extreme learning machine (ELM) algorithm for coal-fired
boilers at a power station in China in 2016. The mode was
then used to optimize operation for NOx reduction. The
ELM algorithm is a single hidden layer feedforward neural
network. The model was developed based on 10 days of
operating data. The NOy emissions predicted by the model
had a mean absolute error (MAE) of 1.4%, a mean square
error (MSE) of 62.1 and an r-value of 98% compared to the
measured NOy values.

Vanderhaegen et al. [30] compared a neural network based
PEMS with a CEMS for NOx and CO monitoring from a
gas turbine for over one year to test whether PEMS can
be a backup system when a CEMS malfunctions. Adaptive
modeling techniques were used on the neural network PEMS.
The model was re-trained and re-calibrated at certain inter-
vals. The optimal interval was reported to be 10 days. The
adaptive model was proven to predict NOy and CO accurately
in different operating regimes with large variations of NOy.

Cuccu et al. [31] tested multiple methods for NOy predic-
tion from ten large-scale gas turbines. The methods tested
include linear regression, kernel ridge regression, support
vector regression and neural network with different optimiza-
tion methods. The models were trained using 1,000 examples
and tested by 1,000 examples. Neural network and support
vector regression produced the highest precision for the NOy
predictions.

In summary, PEMS models have evolved from first princi-
ple based models to Al based models in the past five decades.
Due to rapid development in computing technology, Al based
models can process more data than ever. This makes them
more flexible in selecting and processing process data than
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the first principle or statistical models because the latter must
use process data related to NOy formation. Nevertheless,
developing PEMS or predictive models still has challenges:
1) A PEMS is often an equipment-specific system. Trans-
ferring a model from one piece of equipment to another
requires re-training the model.
2) Models need to be adjusted when equipment operational
conditions change.
3) Models do not perform well under abnormal operational
conditions, e.g., equipment startup and shutdown period.

D. PEMS INSTALLATION

In the US, the first PEMS was installed in 1990 in a
14,100 HP gas turbine at a gas compressor station in
Washington State [15]. This PEMS was equipped with an
operator interface and could display the runtime of emission
monitoring, print daily reporting and store historical data.
The installed PEMS was integrated into the facility’s control
system.

The first regulatory approved PEMS was installed on
a 233 GJ/h gas fired boiler at Arkansas Eastman, near
Batesville, Arkansas in 1993 using 22 process parameters for
NOy emissions monitoring. The PEMS was approved by the
US EPA after passing a RATA in June 1993 [16].

A PEMS was installed on eight ethylene furnaces in Texas
in 1995 to monitor NOx and O, for compliance reporting.
The PEMS was certified by passing RATAs and operated for
compliance reporting [32].

ABB installed a PEMS in a turbo-compressor station for
gas injection in the United Arab Emirates in 2008. The PEMS
monitored emission from four gas turbines and was certified
in accordance with the US EPA requirements [33].

A major European oil refinery installed a PEMS as a
backup to the existing CEMS. The main purpose of the
installation was to increase the emission monitoring sys-
tem’s online availability to over 97.5%. The PEMS provides
redundant values of SO, CO, NO, O,, flue gas flow and
particulate emissions from Fluid Catalytic Cracking and the
Sulfur Recovery Units. The PEMS provided over 99% contin-
uous monitoring with +5% accuracy, compared to physical
instrumentation measurements [2].

Between 2001 and 2018, 26 electrical generation units
were approved to use a PEMS to fulfill emission monitoring
requirements pursuant to CFR 40, Part 75 [34]; 22 of the
electrical generation units were gas turbine units, and 17 of
the gas turbines were equipped with HRSGs.

The PEMS installations pursuant to CFR 40, Parts 60, 61
and 63 are not publicly available. Based on the discussion
with CMC Solution, a major commercial PEMS provider,
more than 300 PEMS in the US have been installed for
compliance reporting or as backup systems under CFR 40,
Part 60 [35].

Ill. PEMS DEVELOPMENT FOR A COGENERATION UNIT
USING KERAS

In Canada, PEMS is an accepted alternative monitoring
method to CEMS at federal and provincial levels [36]-[38].
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However, PEMS implementation and use in Canada, par-
ticularly in Alberta, remains low. The major reasons and
challenges include the following:

1) Industry awareness. Few companies are aware of this
alternative monitoring method. Even though PEMS was
developed in the late 1970s, is widely used in various
sectors and countries and is accepted by provincial and
federal regulations, the benefits of PEMS have not been
realized by the industry in Alberta and Canada.

2) Software licensing. On-site training is required, and
ongoing support from software companies is often
needed to adjust PEMS. The closed software system
does not offer the flexibility desired by reporting per-
sonnel.

3) Lack of clarity in the regulatory approval process for
PEMS installation and application. Although PEMS is
accepted by federal and provincial regulations, the reg-
ulatory framework and approval processes are not clear
in the federal and provincial regulations. Requests for
PEMS application are reviewed case by case.

This case study was conducted in collaboration with

Alberta industry and researchers, and aims to

1) Increase industry awareness through collaboration;

2) Develop predictive models using open source libraries
and programming language to avoid licensing costs; and

3) Provide a showcase to federal and provincial regulatory
agencies in Canada and demonstrate the performance of
Al based predictive models for emissions monitoring.

A. EQUIPMENT DESCRIPTION AND DATA PREPARATION
A cogeneration unit at one of the Cenovus oil facilities
was selected for the study. The cogeneration unit contains
one 45.9 MW gas turbine and one 117 MW HRSG. The
cogeneration unit is equipped with one CEMS on the HRSG
stack. The CEMS continuously monitors stack gas flow rate,
temperature, and NOy flow rate. The HRSG in the cogener-
ation unit does not have additional air intake. All combus-
tion air in the HRSG comes from the gas turbine exhaust
gas (TEG). The gas turbine in the cogeneration unit uses
pipeline natural gas. The HRSG has duct burners to provide
supplemental heat for steam production. The duct burners
use a mixture of pipeline natural gas and produced gas from
oil production processes. As outlined in the Alberta CEMS
monitoring requirements and the facility’s operational permit,
hourly exhaust temperature (°C), exhaust gas flow (m3/s) and
NOy flow rate (kg/h) are submitted to the regulatory agency
for compliance reporting. Note that Cenovus is not currently
using PEMS to meet any of its regulatory requirements.

B. DATA PREPARATION

Turbine-related process data were collected at 5 second inter-
vals from 149 process tags from 07:00 on September 1, 2013,
to 06:00 on September 1, 2015. The hourly NOy emission
data from 2013 to 2015 were retrieved from the facility’s
emissions compliance reports.
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The following steps were taken to select process
parameters.

1. Duplicate tags for the same process parameters were
removed. For example, the parameter ‘‘turbine exhaust gas
temperature” is recorded in 14 process tags. Data from
only one process tag for the TEG temperature was used
for the model development.

2. Process parameters that are not related to NOy formation
were removed based on thermodynamics.

After the above steps, 20 process tags or process parame-
ters were selected. The 5 second interval process data were
then averaged into hourly data to pair with the hourly NOx
data. The following steps were taken to further select the
process parameters.

3. Process parameters with too many missing values were
removed because missing values may be caused by instru-
mentation failure and removal or installation of instru-
ments. The predictive model should be developed based on
reliable and continuously monitored process parameters.

4. Process parameters with near-zero variance were removed
because constant values add little value to prediction.

5. The dependency of targets on predictors and independency
of the predictors on each other were analyzed. Process
variables with the least redundancy were selected.

Eight process parameters were selected after the above
steps for the model development: generator power output,
fuel gas temperature, turbine exhaust temperature, O, con-
centration in the turbine exhaust, fuel gas flow, heat balance
in the exhaust, turbine speed and compressor air temperature.

The process data and NOy data were then tabulated into
a matrix of 17,520 by 9. The process data from 07:00 on
September 1, 2013, to 06:00 on September 1, 2015, were
paired with the emission data in the corresponding period.
Each row in the matrix represents one example. The nine
columns contain eight process parameters and one CEMS
measured NOy values. After the data were tabulated, the fol-
lowing steps were taken:

6. Equipment downtime was removed. The cogeneration unit
was down for maintenance for 1,101 hours in the specified
period.

7. The rows with substituted NOy data were removed. The
substituted data were not measured by the CEMS; they
were calculated based on the regulatory agency’s pre-
scribed methods to backfill the missing data when the
CEMS was offline or out of control.

8. Rows with missing values were removed because the
remaining complete data could fully train the models.

9. NOy values for partial hours or outliers were removed
because the study focused on normal operation.

10. Values corresponding to possible instrumentation noise

(e.g., negative readings) were discarded.

As a result of steps 6 to 10, 7.6% of NOx values were
removed—4.3% due to data substitution (Step 7), 0.9% due
to missing values in the process variables (Step 8), 0.6% due
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to outliers of NOy values (Step 9) and 1.8% due to negative
values in the process data (Step 10).

The dataset was then standardized using Z-score before
training for the machine learning process as expressed in (1).

X —U
7 =

ey

o

where

z is the standardized value of process parameter x
x is the original data of process parameter x

u is the mean value of process parameter x

o is the standard deviation of process parameter x

C. METHOD

NOx predictive models were developed using open source
machine learning library, Keras, and its R and Python inter-
faces. Keras is a neural network library. It was the sec-
ond most referenced deep learning framework in scientific
research, next to Google’s TensorFlow, in 2017 [39]. Keras
is now the official frontend of TensorFlow. Python and R are
open source programming languages.

Feedforward network architecture with a backpropagation
algorithm was used to construct the NOyx predictive models.
The network used is fully connected so that every single
unit (node) in a layer is connected to each unit (node) in
the following layer through weights and biases. Data from
the input layer are passed through the network until units
in the output layer are reached. An example of feedforward
network structure is presented in Fig. 1.

Hidden Layer

Input Layer Output Layer

Turbine Speed T

Fuel Gas Flow 25

Generation Tn

FIGURE 1. Structure of feedforward neural network.

A backpropagation algorithm optimizes weights and biases
to minimize the difference between actual measured values
and predicted values [40].

The dataset was randomly shuffled and then divided into a
training set (80%), which was the data used build models and
optimize weights and biases for certain network structures,
and a test set (20%), which was data that had not been
run through the model before testing. A holdout validation
strategy was used to assess the models and select the best one.
The training set was further divided by 90/10 for training and
holdout validation. The validation dataset was used multiple
times to assess different network structures. The test dataset
was only used once and gave an unbiased evaluation of the
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final model’s performance. The evaluation was to test the
machine learning model and its ability to provide sensible
answers to new inputs [41].

The final examples used for training, validation and evalu-
ation are presented in Table 3.

TABLE 3. Training, validation and test sets.

Number of Exam-

Dataset Use
ples (rows)

Training 10,877 Model Development
Assess performance among

Validation 1,209 different model structures to
select the best model

Total - Training 12,086
Evaluate the performance of

Test 3.020 the best' quel, such as
generalization and predic-
tive power

Total - Data 15,106

The following hyperparameters were tuned to construct
different network structures to select the best model:

o Number of units

o Number of layers

o Optimization methods

The optimization methods tested included Nesterov-
accelerated Adaptive Moment Estimation (Nadam) [42],
Adaptive Moment Estimation (Adam) [43], and
RMSProp [44].

The following hyperparameters were set to be constant:

o Loss function: MSE. Loss function is used to compute
the difference between the actual output (CEMS mea-
sured NOy value) and predicted output (model predicted
NOy value).

o Learning rate: 0.001. The learning rate scales the mag-
nitude of weight updates to minimize the network’s loss
function. The initial learning rate is set to be 0.001.
If the models do not meet the regulation requirements
for precision, smaller learning rates, such as 0.0005 and
0.0001, will be applied [45].

« Activation function: ReLU. Activation function is a non-
linear transformation that is applied to an input signal of
a unit in a network to convert the input to an output.

« Metrics to validate and evaluate the accuracy of models:
MAE.

« Batch size: 32. Batch size is the number of examples that
an algorithm works through before updating the model
parameters.

Five randomly selected network structures and three
optimization methods for 15 models were tested. The five
network structures are

1) 32-64;

2) 16-32-32;

3) 16-64-32;

4) 16-64-64; and
5) 32-64-64-64.
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The structure refers to the number of units and layers for
the hidden layers. For example, 32-64 structure represents
two hidden layers with 32 units in the first hidden layer
and 64 units in the second hidden layer. The input layer has
8 units, which represent 8 selected process parameters. The
output layer has one unit to be NOx emission in kg/h.

Neural networks use randomness to effectively learn the
function being approximated for the problem, for exam-
ple, random initialization of the network weights. The five
selected model structures with three optimization methods
(15 models total) were run 30 times (30 repeats). The average
MAE and MSE by the validation dataset in the 30 repeats
were used to select models for further assessment.

The selected models were further assessed using the
K-fold cross-validation method, then made predictions on the
entire training dataset of 12,086 training examples, includ-
ing 10,877 examples in the training and 1,209 examples in
the validation set. In this study, 6-fold was used to validate
the models. Statistical tests were then conducted in accor-
dance with the US EPA’s precision requirements as outlined
in Table 1.

The models that passed the statistical tests were evaluated
using the test dataset. The statistical tests were conducted on
the test dataset.

To evaluate the models, the CEMS measured NOy, and
predicted values in the test dataset were normalized using
Min-Max scaling method as expressed in (2).

Xnorm = L Smin_ ()
Xmax — Xmin
where
Xnorm 18 the normalized value
x is the original predicted or CEMS measured values
Xmin 1s the minimum value of the predicted or CEMS
measured values in the dataset
Xmayx 1S the maximum value of the predicted or CEMS mea-
sured values in the dataset

Standard residual is also used to evaluate model perfor-
mance; it is defined as the residual divided by the standard
deviation of the residuals.

IV. RESULTS

A. MODEL SELECTION

The average MAE and MSE using the validation dataset
by five network structures and three different optimiza-
tion methods are presented in Fig. 2. The networks with
four hidden layers have the smallest errors. The network of
32-64-64-64 with Adam optimizer has the smallest MAE and
MSE. For all 15 models, the average MAE in the 30 repeats
ranges from 0.5877 to 0.7852, and the average MSE in the
30 repeats ranges from 0.8084 to 1.4689.

Nine models that have the minimum average MSE and
MAE in the 30 repeats were chosen for statistical tests using
the entire training dataset of 12,086 training examples (rows).
All models pass the requirements for r-value and F-value set
out by the US EPA in Table 1. The network 32-64-64-64 with
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1.4 Network Structure
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Mean Absolute Error (MAE)

FIGURE 2. Average MAE and MSE in the repeats using the validation
dataset.

Adam optimizer has the highest r-value of 0.9744. The
r-values between the predicted values and CEMS values
range from 0.9279 to 0.9744. F-values of test statistics range
from 0.8331 and 0.9520 (Fig. 3). The critical F-value is
1.0304 for the 12,086 training examples.

1.05
F critical value

32 64¢ 64+ 64 (Adam)
.
32+ 64+ 64+ 64 (Nadam)
16¢ 64+ 64 (Nadam) .
160 64+ 32 (Adam) *
.
16¢ 64+ 32 (Nadam)
16+ 64+ 64 (Adam)
.
16+ 64+ 64 (RMSProp)

F Value of Test Statistic
o
©
R

o
@
3

32+ 64+ 64+ 64 (RMSProp)
16+ 32+ 32 (Nadam) .
.

0.93 0.94 0.95 0.96 0.97
R Value

FIGURE 3. F and R values using the training dataset. based on
12,086 training examples.

The mean difference between CEMS and predicted values
in six models is greater than the absolute value of confidence
coefficient. The percentage difference between the CEMS
measured and predicted values ranges from —0.4% to 1.9%
in the 12,086 training examples.

32-64-64-64 (RMSProp,
32-64-64-64 (Nadam

32-64-64-64 (Adam

)

)
= )
®
N
€ 16-64-64 (RMSProp) .
3
% 16-64-64 (Nadam) .
§ 16-64-64 (Adam) .
@ 16-64-32 (Nadam) .

16-64-32 (Adam) .
16-32-32 (Nadam) °
05 06 07 0.8
Mean Absolute Error
Dataset Test ® Training

FIGURE 4. Mean absolute error in the training and test dataset. based on
12,086 training examples and 3,020 test examples.
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FIGURE 5. R and F values using the test dataset.

TABLE 4. Statistical tests using the training dataset.

Model' dave cc] Difference
32-64-64-64 (Nadam) 0.0170 0.0122 0.1%
16-32-32 (Nadam) -0.0189 0.0180 -0.1%
16-64-32 (Nadam)? 0.1172 0.0165 0.7%
16-64-64 (Nadam) -0.2030 0.0148 -1.2%
32-64-64-64 (Adam)’ 0.0518 0.0108 0.3%
32-64-64-64 (RMSProp)® | 0.1610 0.0126 0.91%
16-64-32 (Adam)? 0.1458 0.0161 0.8%
16-64-64 (Adam) -0.0758 0.0148 -0.4%
16-64-64 (RMSProp) 0.3284 0.0149 1.9%

1: Model name is defined as Structure (Optimization Method).

2: Bias adjustment is needed for these models.
3: The training dataset has 12,086 examples.

All nine models pass the statistical tests using the train-
ing dataset, and three out of nine do not need bias adjust-
ment based on the precision requirement listed in Table 1,
i.e., davg < [cc| (Table 4).

B. MODEL EVALUATION
The nine selected models were evaluated using the test
dataset. The MAEs between the training and test datasets are

32-64-64-64 (Nadam)
1.00

0.75
0.50

0.25

CEMS Measured NOx Emissions

0.00

0.25 0.50 0.75
Predicted NOx Emissions

1.00

CEMS Measured NOx Emissions

TABLE 5. Statistical tests using the test dataset.

Model dave lce] Bias' Difference
32-64-64-64 (Nadam) 0.0239 | 0.0316 | N/A 0.14%
16-32-32 (Nadam) 0.0103 | 0.0390 | N/A 0.06%
16-64-32 (Nadam) 0.1496 | 0.0355 | 1.0086 0.85%
16-64-64 (Nadam) -0.1933 | 0.0321 | N/A -1.10%
32-64-64-64 (Adam) 0.0623 | 0.0305 | 1.0035 0.35%
32-64-64-64 (RMSProp) 0.2099 | 0.0326 | 1.0120 1.19%
16-64-32 (Adam) 0.1633 | 0.0371 | 1.0093 0.93%
16-64-64 (Adam) -0.0797 | 0.0334 | N/A -0.45%
16-64-64 (RMSProp) 0.3541 0.0341 | 1.0205 2.01%

1: Bias adjustment factor, calculated based on US EPA PS16.
2: The test dataset has 3,020 examples.

presented in Fig. 4. The MAE for the training dataset is the
average from the 6-fold cross-validation. The MAE in the
test set ranges from 0.5696 to 0.7647, compared to 0.5491
to 0.7464 in the training set.

The r-values and F-values between predicted values and
CEMS measured values in the training and test datasets are
presented in Fig. 4. All r-values using the test dataset are less
than the values using the training dataset. The r-values ranged
from 0.9146 to 0.9487 in the test, compared to 0.9279 to
0.9744 in the training. The F-values of the test statistic for
all nine models are less than the F-critical value, which is
1.0617 for the 3,020 test examples (Fig. 5).

The mean difference between CEMS and predicted val-
ues and the confidence coefficient using the test dataset is
presented in Table 5. Five of the nine models needed bias
adjustment.

The adjusted predicted value is calculated by the original
predicted values multiplied by the bias factor. The absolute
percentage of the difference between the CEMS and pre-
dicted values ranges from 0.06% to 2.01% in the 3,020 test
examples.

Comparing predictions to observations., the predicted val-
ues by the 32-64-64-64 (Nadam) and 32-64-64-64 (Adam)

32-64-64-64 (Adam)
1.00

o
3
o

o
o
S

o
o
a

©
=}
=}

0.25 0.50 0.75
Predicted NOx Emissions

1.00

FIGURE 6. CEMS Measured NOy versus Predicted Emissions. Based on 3,020 test examples.
Values on both axes are normalized between 0 and 1 using Min-Max scaling method. The
yellow line represents the CEMS values that are equal to the predicted values. The green

circles represent the density of the data.
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FIGURE 7. Standardized Residuals versus Predicted NOyx emissions. Based on 3,020 test
examples. Values of predicted NOx emissions are normalized between 0 and 1 using

Min-Max scaling method.

models have better alignment with the CEMS measured val-
ues than the other models (Fig. 6). Moreover, 53.6% of the
standardized residuals from the 32-64-64-64 (Nadam) model
and 53.9% of the standardized residuals from the 32-64-
64-64 (Adam) model fall in the [—1.1] range (Fig. 7). The
percentages of standardized residuals in the [—1.1] range
from the other seven models are below 53%. In addition, these
two models have the minimum MAE:s in the test dataset; the
MAEs are 0.5982 for 32-64-64-64 (Nadam) and 0.5696 for
32-64-64-64 (Adam).

The comparison of the performance for all nine models is
provided in Appendix.

V. CONCLUSION AND DISCUSSION

Nine neural networks based on models with different struc-
tures and optimization methods were tested to predict NOy
emissions using eight process parameters. The models were
constructed using Keras and its Python and R interfaces.

The models were trained with 12,086 training examples
and tested with 3,020 test examples. All models passed the
requirements for r- and F-values set out by the US EPA. Bias
adjustment was needed for five models. The test shows that
the maximum difference between the sum of CEMS values
and predicted values is 2.01%, produced by the 16-64-64
(RMSProp) model. The 16-32-32 (Nadam) model produced
the minimum difference of 0.06% between the sum of CEMS
values and predicted values.

According to the assessment of MAE and standardized
residuals, the 32-64-64-64 (Nadam) and 32-64-64-64 (Adam)
models have the best performance of the nine tested models.
In addition, the 32-64-64-64 (Nadam) model does not need
bias adjustment for the predicted values, and the 32-64-64-64
(Nadam) and 16-64-32 (Adam) models produce similar MAE
using the training dataset and test dataset (Fig. 1), which
indicates that the models are not overfitting or underfitting.
Therefore, the 32-64-64-64 network structure using Nadam
for optimization is considered to be the best model.
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Although learning rate and learning schedule are consid-
ered the most important hyperparameters, the initial learning
rate of 0.001 was proven to be sufficient, because all the
models in this study met the regulatory requirements for
precision with that learning rate. The study also showed that
models with more complex structures had better performance
than the models with simpler structures. The more complex
models exceeded the precision requirements set out by the US
EPA without overfitting. It is possible that even more complex
models or smaller learning rates would achieve even better
results.

The purpose of this study was to demonstrate whether an
open source library can be used to develop a PEMS model that
still meets the standards set out by the US EPA. Exhaustively
testing many possible architectures or hyperparameters for
the absolute best predictive value was beyond the scope of
this study but would merit further investigation.

With Keras and R and/or Python, a facility operator
can develop their own PEMS for emission monitoring and
control analysis with minimal or no cost. The predictive
emissions model can help facility operators meet emissions
compliance and support equipment adjustment decisions,
process optimization for emissions control and maintenance
scheduling.

For compliance monitoring, additional functionality needs
to be included to meet the requirements of US EPA PS16 or
CEN/TS 17198:2018, such as daily checks and a PEMS
system alarm.

Data preparation is critical for model development. Close
attention should be paid to the following items when devel-
oping predictive models:

1) Instrumentation noise: Instrumentation noise needs to be
closely examined and carefully selected. In this study,
negative values were treated to be instrumentation noise,
and invalid data were removed for modeling.

2) Missing values: Methods to deal with missing val-
ues in the process parameters need to be established
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FIGURE 8. CEMS Measured versus Predicted NOx Emissions Using the Test Dataset. Values on both axes are normalized between 0 and 1. One negative
predicted value was removed in the Model 16-64-32 (Adam).

and examined. In this study, some process parameters If TEG temperature is missing from one process tag,
were monitored by multiple instruments. For exam- it can be supplemented with the data from other pro-
ple, TEG temperature is monitored by 13 temperature cess tags. In this study, missing values were simply
transmitters and recorded in 13 different process tags. removed.
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FIGURE 9. Standardized Residuals versus Predicted NOx emissions. Values of predicted NOx emissions are normalized between 0 and 1. One negative
predicted value was removed in the Model 16-64-32 (Adam).

3) Non-normal operation: Partial hours and periods of
equipment startup and shutdown need to be examined.
Predicted models do not perform well during abnormal
operations. In this study, if partial hours were included
for NOx prediction, all nine models generated negative
values. Further studies are needed for non-normal oper-

ation periods.
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Compared to the first principle method and the statistical
method, the neural network based approach relies less on
the number and type of specific process parameters used
for model development. In other words, certain process
parameters, such as combustion temperature, are essential
to develop predictive models for NOx emissions using the

first principle and statistical methods. However, with a neural
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network based approach, facility operators have the flexibility
to choose process parameters based on data availability at
their own facility.

This study is the first to assess the predictive models
with ReLU as the activation function in accordance with the
regulatory requirements for precision outlined by US EPA’s
CFR 40, Part 75 and PS16. Most existing neural network
based PEMS models use Sigmoid as the activation function.
When plotted, the Sigmoid function forms the shape of an S.
Because of the geometrical shape of the Sigmoid activation
function, it has major drawbacks, such as slow computation
and vanishing gradient problems [5]. The vanishing gradient
causes the algorithm to stop the neural network from further
training.

In addition, this study is the first to use an open source
library to develop a predictive model, which could be more
widely used by industry than proprietary models. Users can
easily repeat the simulation and validate the model by them-
selves with the open source library.

Moreover, this study presents the most thorough compari-
son to date of different network structures regarding perfor-
mance and optimization methods in accordance with the US
EPA’s regulatory requirements.

Finally, the study contributes to wider use of predictive
models and to cost reductions for industry since anyone can
use the open source library to repeat this study’s tests and
build their own models by following the procedure described
in the paper.

APPENDIX
o Appendix: Fig.8: CEMS Measured NOy versus Pre-
dicted Emissions
o Appendix: Fig.9: Standardized Residuals versus Pre-
dicted NOy emissions.
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