
Journal Pre-proof

Development of a predictive emissions model using a gradient boosting
machine learning method

Minxing Si, Ke Du

PII: S2352-1864(20)31328-6
DOI: https://doi.org/10.1016/j.eti.2020.101028
Reference: ETI 101028

To appear in: Environmental Technology & Innovation

Received date : 31 March 2020
Revised date : 30 June 2020
Accepted date : 2 July 2020

Please cite this article as: M. Si and K. Du, Development of a predictive emissions model using a
gradient boosting machine learning method. Environmental Technology & Innovation (2020), doi:
https://doi.org/10.1016/j.eti.2020.101028.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.eti.2020.101028
https://doi.org/10.1016/j.eti.2020.101028


 

Page 1 of 34 

 

Development of a Predictive Emissions Model using a 1 

Gradient Boosting Machine Learning Method 2 

Minxing Sia,b and Ke Dua* 3 

a Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 4 

University Drive NW, Calgary AB T2N 1N4 Canada 5 

b Tetra Tech Canada Inc., 140 Quarry Park Blvd Suite 110, Calgary, AB T2C 3G3 Canada 6 

*Corresponding author: Ke Du (email: kddu@ucalgary.ca) 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

Manuscript File

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

Page 2 of 34 

 

ABSTRACT: Predictive emissions monitoring systems (PEMSs) are alternatives to 26 

continuous emissions monitoring systems (CEMSs) for monitoring air pollutants, such as 27 

NOx. Existing PEMSs and related research have focused on applying artificial neural network 28 

(ANN) algorithms. However, ANN-based models are treated as “black boxes”. Regulators 29 

and decision makers without a statistical background often have difficulty understanding 30 

these models, which poses a significant challenge for a broader application of PEMSs. In this 31 

study, we proposed a tree-based ensemble method with gradient boosting techniques for 32 

PEMS development. Compared to ANNs, tree-based methods are easier to understand and 33 

require less effort to preprocess data, fewer hyperparameters for model tuning, and less 34 

time for model training. We developed a predictive model using a gradient boosting machine 35 

learning library called XGBoost to monitor NOx emissions from a boiler located in Alberta, 36 

Canada. The model uses five process parameters as inputs and the predicted NOx emissions 37 

as output. We trained the model with 202,047 samples using random search methods to 38 

determine the best model and tested the model with 50,512 samples. We evaluated the test 39 

results against US EPA PEMS standards. The model passed all the statistical tests for 40 

precision outlined by US EPA Performance Specification 16. The Pearson correlation r value 41 

was 0.98 between the XGBoost-predicted NOx values and the CEMS-measured NOx values. 42 

The RMSE was 0.14, and the MAE was 0.09. We conclude that XGBoost is a good option for 43 

developing PEMSs. Facility operators can use the method provided in this study to develop 44 

PEMSs by themselves using the open-source library XGBoost at no cost. 45 

KEYWORDS: Predictive Emissions Monitoring System, PEMS, XGBoost, Gradient Boosting, 46 

NOx Monitoring 47 
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1.0         Introduction 51 

The nitrogen oxides (NOx) family comprises seven compounds, including nitric oxide (NO), 52 

nitrogen dioxide (NO2), and other oxides of nitrogen derivatives (US EPA, 1999). NOx, or 53 

oxides of nitrogen, commonly refers to NO and NO2 together (Environment and Climate 54 

Change Canada, 2019; US EPA, 2019). NOx has significant adverse environmental and 55 

health effects, contributing to acid rain and smog and forming fine particles (PM) and ozone 56 

in the ambient air (tropospheric ozone or ground-level ozone) (Boningari and Smirniotis, 57 

2016; Mauzerall et al., 2005). Industrial facilities with large stationary combustion sources 58 

are typically required to be equipped with one or more continuous emissions monitoring 59 

systems (CEMSs) to monitor NOx emissions for compliance with regulatory emission limits 60 

(Cozza and Faulkner, 1993; US EPA, 1994; White, 1993). However, CEMSs require high 61 

initial capital and operating costs, as well as frequent maintenance and operator training 62 

(Roth and Lawrence, 2010). 63 

 To address these issues with CEMSs and offer an alternative for monitoring NOx, a 64 

predictive emissions monitoring system (PEMS) was first developed in the 1970s (Hung, 65 

1975). Since 1990, PEMS applications have been widely reported for a range of emission 66 

sources in various industries (Chien et al., 2010, 2005; Cooper and Andreasson, 1999; 67 

Hung and Langenbacher, 1995; Kamas and Keeler, 1995). The first generation of PEMSs 68 

was developed using first principles methods based on energy and mass balances (Chien et 69 

al., 2005; Faravelli et al., 2000; Harnevie et al., 1996). The second generation of PEMSs 70 

explored the statistical relationship between operating parameters and air emissions (Chien 71 

et al., 2010; Lee et al., 2005; Saiepour et al., 2006). When the operating parameters used 72 

to build statistical models were selected, thermodynamics was often considered. The second 73 

generation was referred to as statistical methods or statistical hybrid methods. The most 74 

recent PEMSs, or third generation, were developed using machine learning algorithms called 75 

artificial neural networks (ANNs) (Cuccu et al., 2017; Vanderhaegen et al., 2010). An ANN-76 
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based PEMS is more flexible than a PEMS of the first or second generations because it can 77 

use operating parameters beyond those related to NOx formation. Botros et al. (2011) 78 

developed ANN-based predictive models for NOx monitoring in gas turbines in natural gas 79 

compressor stations. The models used four process parameters and had one hidden layer 80 

with two units. The study found that the uncertainty of NOx prediction was ±2.5% to ±6%. 81 

Zain and Kien Kek Chua (2011) developed ANN-based models for CO, O2, NOx, and CO2 82 

monitoring in an incinerator. The ANN used three process parameters as the input layer and 83 

had two hidden layers. Each hidden layer had 5 units. The study concluded that the 84 

accuracy of the models was 98%. Tan et al. (2016) developed NOx predictive models using 85 

a single-hidden-layer feedforward ANN for process optimization and emission reductions in a 86 

700 MW coal-fired boiler. The mean square error (MSE) was 62.1, and the correlation 87 

coefficient was 0.98. Si et al. (2019) developed ANN-based models for NOx monitoring in a 88 

cogeneration unit. The best model had a mean absolute error (MAE) of 0.60 and Pearson r 89 

value of 0.95. 90 

The primary regulatory frameworks for using PEMSs as compliance monitoring and 91 

reporting tools were developed by the United States Environmental Protection Agency (US 92 

EPA) under Title 40 of the Code of Federal Regulations (CFR), specifically Performance 93 

Specification 16 (PS16) and Part 75 (US EPA, 2009). The European Committee for 94 

Standardization (CEN) published a technical specification (TS) for PEMS applicability, 95 

execution, and quality assurance (CEN/TS 17198:2018) in August 2018 (European 96 

Committee for Standardization, 2018). Many countries outside of the US and Europe, such 97 

as Gulf countries, use these guidelines for PEMS certification, especially the US EPA 98 

standards (ABB S.p.A., 2014). In the US, the first regulatory approval of a PEMS for 99 

emissions monitoring and reporting occurred in June 1993 (Kamas and Keeler, 1995). To 100 

date, a few hundred PEMSs have been installed worldwide and are used for compliance 101 
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reporting, offline what-if analysis, and analyzer availability enhancement (Eisenmann et al., 102 

2014; Swanson, 2018). 103 

 Although PEMSs were developed 50 years ago and have evolved from first principles-104 

based models to machine learning-based models to become more accurate, they have not 105 

been widely installed and used because facility operators did not realize significant cost 106 

savings when using commercial PEMSs, especially for the initial capital cost. For example, 107 

Arkansas Electric Cooperative Corporation installed seven PEMSs for emissions monitoring 108 

and regulatory reporting. They estimated that the initial capital costs of installing 109 

commercial PEMSs were similar to the costs of installing CEMSs (Bivens, 2019, 2017) 110 

because of the software licensing fee and consulting cost for model training and setup. 111 

 Si et al. were the first to introduce open-source machine learning libraries for PEMS 112 

development. Their study built feedforward ANN-based models for NOx monitoring using 113 

Google’s TensorFlow and Keras libraries and aimed to provide facility operators with 114 

methods to develop predictive emissions models by themselves (Si et al., 2019). However, 115 

the models developed in the study inherited some common drawbacks of ANN algorithms. 116 

For example, ANN models are treated as “black boxes” because strong statistical knowledge 117 

is needed to understand ANN algorithms. Decision makers and regulators are often skeptical 118 

about the outputs produced from these black boxes due to the lack of statistical background 119 

(Guelman, 2012).  120 

 In this study, we developed a predictive model for NOx emission monitoring and 121 

regulatory reporting using a tree-based ensemble machine learning algorithm called 122 

XGBoost. XGBoost was implemented as an open-source machine learning library and 123 

developed based on gradient boosting techniques introduced by Friedman (2001). Gradient 124 

boosting has been successfully applied to tree models (Guelman, 2012; Krauss et al., 2017; 125 

Semanjski and Gautama, 2015; Zhang and Haghani, 2015). Gradient tree boosting adds 126 

multiple weak trees together and forms a strong learner to optimize predictive performance. 127 
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This method is also known as a gradient boosted regression tree (GBRT) and a gradient 128 

boosting machine (GBM). XGBoost was first released in 2014 (Labram, 2019) and has since 129 

become popular among machine learning practitioners. In 2015, 17 out of 29 winners in the 130 

Kaggle machine learning competitions used the XGBoost algorithm (Nielsen, 2016). 131 

XGBoost is easier to interpret than ANN-based algorithms, so decision makers and 132 

regulators can better understand how the predictive models work and how outcomes are 133 

produced. In addition, XGBoost requires less effort for data preprocessing and has fewer 134 

hyperparameters for tuning. 135 

Existing PEMSs and related research have focused on the use of ANN algorithms. To 136 

the best of our knowledge, the gradient boosting approach has not been applied to 137 

predictive models for emissions monitoring and reporting, even though PEMSs have been 138 

researched, developed, and installed for almost five decades. In addition, according to US 139 

EPA and EU PEMS standards, PEMSs need to be able to generate data for substitution when 140 

one or more process parameters (sensors) fail, such as missing data. Previous studies 141 

removed missing data for model development. In this study, we test a method for data 142 

substitution to bridge this gap. Using the methods presented in this study, facility operators 143 

will have more complete knowledge to develop their emission models by themselves and 144 

obtain regulatory approval. 145 

2.0         Material and Method 146 

2.1 Tree-based Methods and Tree-based Ensemble Learning 147 

Tree-based methods build predictive models by repeatedly splitting the predictor space into 148 

rectangles by some criteria and then fitting a model for each rectangle. Figure 1 shows that 149 

the space for two predictors, fuel gas flow and exhaust gas temperature, is divided into 150 

three rectangles, as summarized in Figure 2. 𝑅 represents the divided areas in Figure 1 151 

called the terminal regions or leaf nodes in the tree model shown in Figure 2. 𝑗 represents 152 
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the number of leaf nodes. The output 𝑤 of each leaf node is calculated by averaging the 153 

observed values in the training dataset. 154 

 155 

 156 

Figure 1: Example of Feature Splitting 157 

 158 

 159 

Figure 2: Example of a Tree-Based Predictive Model. 𝑹 denotes the terminal 160 

regions or leaf nodes in the tree model. 𝒋 is the number of leaf nodes. 𝒘 161 

is the output of each leaf node. 𝒌 is the number of trees. 162 
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 Ensemble learning builds strong predictive models by combining the strengths of a 163 

set of weak models. Tree-based ensemble learning can be written as Equation 1: 164 

�̂�𝑖 = ∑ 𝑓𝑘(𝑥𝑖)
𝐾
𝑘=1 ,  𝑓𝑘 ∈  ℱ                                                                                    Equation 1 165 

where ℱ is the space of all regression trees and 𝐾 is the number of trees. 166 

A prediction method using tree-based ensemble learning is presented in Figure 3. 167 

 168 

Figure 3: Example of Tree-based Ensemble Learning 169 

2.2 Gradient Boosting and XGBoost 170 

Boosting is an ensemble method that combines multiple weak learners to produce a power 171 

learner. A boosting method adds new learners 𝑓𝑥 (tree or estimator) sequentially. At 172 

iteration 𝑘, the new estimator 𝑓𝑘(𝑥𝑖) tries to correct the previous prediction �̂�𝑖
(𝑘−1) or 𝐹(𝑘−1)(𝑥) 173 

and generates a new prediction �̂�𝑖
(𝑘) or 𝐹(𝑘)(𝑥), and this process can be written as Equation 174 

2. 𝐹(𝑘−1)(𝑥) and 𝐹(𝑘)(𝑥) represent the functions that produce the predicted values at iterations 175 

𝑘 − 1 and 𝑘, respectively. Iteration 𝑘 also indicates that 𝑘 trees are ensembled in the model. 176 

�̂�𝑖
(𝑘) = �̂�𝑖

(𝑘−1) + 𝑓𝑘(𝑥𝑖)  (2) 177 

Algorithm 1: Gradient Tree Boosting Algorithm Note 

 Input: Dataset 𝓓 = {(𝒙𝑖 , 𝒚𝑖)}𝑖=𝟏
𝒏  𝒙𝑖  represents the values of the input 
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A loss function 𝐿(𝒚, 𝐹(𝑥)) 

The number of iterations 𝐾 

The learning rate 𝜂 

parameters for the ith sample. 

𝒚𝑖  represents the observed value for 

the ith sample. 

𝑛 represents the number of samples 

in the training dataset 

𝐿 =
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 −  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2

2
 

𝐹(𝑥) is the function that produces 

the predicted values 

 

1 Initiate a model with a constant value 

𝐹0(𝑥) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝜌 ∑ 𝐿(𝑦𝑖 , 𝜌)

𝒏

𝑖 = 1

 

𝜌 is an initial predicted value. 𝜌 

could be the mean of the observed 

values. In XGBoost, the default 

value is 0.5. 

2 For 𝑘 =  1 to 𝐾 𝑘 is the kth tree 

  

a) For 𝑖  = 1 𝑡𝑜 𝑛, compute “pseudo-residuals” 

𝑟𝑖𝑘 = − [
𝜕𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
]

𝐹(𝑥)=𝐹(𝑘−1)(𝑥)

 

𝑖 is the ith sample in the training 

data 

 

  

b) Fit a regression tree to predict the 

residuals 𝑟𝑖𝑘; create a terminal region 

(leaf) 𝑅𝑗𝑘, 𝑗 = 1, 2, . . . , 𝐽𝑘 

 

  

c)  For 𝑗 = 1, 2, . . . , 𝐽𝑘, compute 

𝜌𝑗𝑘 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝜌 ∑ 𝐿(𝑦𝑖 , 𝐹(𝑘−1)(𝑥𝑖)  +  𝜌)

𝒙𝑖∊𝑅𝑖𝑗

 

𝑗 is the jth terminal region (leaf) 

𝜌𝑘 is the output of the kth estimator 

(tree) 𝑓𝑘(𝑥) 
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to determine the output values of each leaf  

  

d) Update 

𝐹(𝑘)(𝑥) = 𝐹(𝑘−1)(𝑥) + 𝜂 × ∑ 𝜌𝑗𝑘Ι(𝑥 ∊ 𝑅𝑗𝑘)

𝐽𝑘

𝑗 = 1

 

𝐹(𝑘−1)(𝑥) is the previous prediction 

𝜌𝑗𝑘 is the output from the tree made 

in Step c). 

∑
𝐽𝑘
𝑗 = 1  summation is used when a 

single sample ends up in multiple 

leaf nodes 

3 Output 𝐹(𝐾)(x) 

�̂�𝑖 = 𝐹0(𝑥) + ∑ 𝑓𝑘(𝑥𝑖)

𝐾

𝑘=1

 

 

 178 

The learning steps by gradient boosting are illustrated in Figure 4. 179 

 180 

Figure 4: Illustration of Gradient Boosting 181 

Unlike traditional boosting, XGBoost adds a regularization function to prevent 182 

overfitting and optimizes the loss function by a Taylor expansion (Chen and Guestrin, 183 

2016). The objective function 𝐽 in XGBoost describes the model’s performance and can be 184 

written as Equation 3: 185 

J = ∑ 𝐿(𝑦𝑖 , �̂�𝑖)

𝑛

𝑖=0

+  ∑ Ω(𝑓𝑘)

𝐾

𝑘=0

                                                                                                                                                  (3) 186 

where n is the number of training samples and Ω(𝑓𝑘) is a regularization function. 187 

Ω(𝑓𝑘) is written as Equation 4: 188 
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Ω(𝑓𝑘) = γT +  
1

2
λ ∑ w𝑗

2

𝑇

𝑗=0

                                                                                                                                                        (4) 189 

where 𝑇 is the number of leaf nodes and γ and λ are hyperparameters in XGBoost that users 190 

can define. 𝑤 is the leaf weight (i.e., a predictive value in a terminal node). The objective 191 

function for the mth iteration can be written as Equation 5, where m represents elements of 192 

𝐾 iterations (𝑚 ∈  {𝑘1, 𝑘2, . . . . 𝐾}). 193 

J𝑚 = ∑ 𝐿(𝑦𝑖 ,  �̂�𝑖
(𝑚) ) +

𝑛

𝑖 =1

∑ Ω(𝑓𝑚(𝑥𝑖))

𝑚

𝑘=1

= ∑ 𝐿(𝑦𝑖 , �̂�𝑖
𝑚−1 + 𝑓𝑚(𝑥𝑖) ) +

𝑛

𝑖 =1

∑ Ω(𝑓𝑚(𝑥𝑖))

𝑚

𝑘=1

                                           (5) 194 

To optimize the objective function, the XGBoost algorithm takes the following steps: 195 

1) Use a second-order Taylor expansion to approximate the derivatives, and write J𝑚 as 196 

Equation 6: 197 

J𝑚 ≃ ∑[𝐿(𝑦𝑖 , �̂�𝑖
(𝑚−1)) +

𝑛

𝑖 =1

𝑔𝑚(𝑥𝑖)𝑓𝑚(𝑥𝑖)  +  
1

2
 ℎ𝑚(𝑥𝑖)𝑓𝑚(𝑥𝑖)

2] + ∑ Ω(𝑓𝑚(𝑥𝑖))

𝑚

𝑘=1

                                        (6) 198 

where 𝐿(𝑦𝑖 , �̂�𝑖
(𝑚−1)) is the loss function for the previous prediction and 𝑔𝑚(𝑥𝑖) represents 199 

the first derivative of the loss function 𝐿(𝑦𝑖 , �̂�𝑖
(𝑚−1)), called the gradient. ℎ𝑚(𝑥𝑖) is the 200 

second derivative of the loss function 𝐿(𝑦𝑖 , �̂�𝑖
(𝑚−1)), called the Hessian. 𝑔𝑚(𝑥𝑖) and ℎ𝑚(𝑥𝑖) 201 

are written as follows: 202 

𝑔𝑚(𝑥𝑖) =
𝑑𝐿(𝑦𝑖 , �̂�𝑖

(𝑚−1))

𝑑�̂�𝑖
(𝑚−1)

 𝑎𝑛𝑑 ℎ𝑚(𝑥𝑖) =
𝑑2𝐿(𝑦𝑖 , �̂�𝑖

(𝑚−1))

𝑑(�̂�𝑖
(𝑚−1))2

 203 

2) Remove the constant term ∑ 𝐿(𝑦𝑖 , �̂�𝑖
(𝑚−1))𝑛

𝑖 =1  because it is not related to the output 204 

values 𝑓𝑚(𝑥𝑖) and has no effect on optimizing the objective function. Equation 6 is 205 

then written as Equation 7: 206 

J𝑚 = ∑[

𝑛

𝑖 =1

𝑔𝑚(𝑥𝑖)𝑓𝑚(𝑥𝑖)  +  
1

2
 ℎ𝑚(𝑥𝑖)𝑓𝑚(𝑥𝑖)

2] + ∑ Ω(𝑓𝑚(𝑥𝑖))

𝑚

𝑘=1

                                                                     (7) 207 

3) Replace 𝑓𝑚(𝑥𝑖) with the sum of the tree leaves written as Equation 8. The sum of the 208 

tree leaves is the sum of the outputs of the trees: 209 
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𝑓𝑚(𝑥𝑖)  =   ∑ 𝑤𝑗𝑚Ι(𝑥 ∊ 𝑅𝑗𝑚)

𝑇

𝑗 = 1

                                                                                                                                  (8) 210 

Replace Equation 7 with Equation 8, and J𝑚 is written as Equation 9: 211 

J𝑚 = ∑[

𝑛

𝑖 =1

𝑔𝑚(𝑥𝑖) ∑ 𝑤𝑗𝑚

𝑇

𝑗 = 1

 +  
1

2
 ℎ𝑚(𝑥𝑖) ∑ 𝑤𝑗𝑚

2

𝑇

𝑗 = 1

] + γT +
1

2
λ ∑ 𝑤𝑗𝑚

2

𝑇

𝑗 = 1

                                                         (9) 212 

The sums of 𝑔𝑚(𝑥𝑖) and ℎ𝑚(𝑥𝑖) can be simplified as in Equation 10: 213 

𝐺𝑗𝑚 = ∑ 𝑔𝑚(𝑥𝑖)
𝑖∊𝛪𝑗𝑚

, 𝐻𝑗𝑚 = ∑ ℎ𝑚(𝑥𝑖)
𝑖∊𝛪𝑗𝑚

                                                                                                      (10) 214 

where 𝛪𝑗𝑚 denotes the set of training samples (instances, 𝑥𝑖) in the region (leaf) 𝑅𝑗𝑚. 215 

4) Replace 𝑔𝑚(𝑥𝑖) and ℎ𝑚(𝑥𝑖) in Equation 9 with Equation 10. J𝑚 is written as Equation 216 

11. 217 

J𝑚 = ∑ [

𝑇

𝑗 = 1

𝐺𝑗𝑚𝑤𝑗𝑚  +  
1

2
(𝐻𝑗𝑚 + λ)𝑤𝑗𝑚

2  ] + γT                                                                                                (11) 218 

5) Minimize the objective J𝑚 in Equation 11 by the weight 𝑤𝑗𝑚 for each leaf using the 219 

derivative of J𝑚 with respect to 𝑤𝑗𝑚, as written in Equation 12. 220 

𝜕𝐽𝑚

𝜕𝑤𝑗𝑚

 =  𝐺𝑗𝑚  +  (𝐻𝑗𝑚 + λ)𝑤𝑗𝑚 = 0                                                                                                                      (12) 221 

6) Calculate the best weight 𝑤𝑗𝑚 using Equation 13. 222 

                𝑤𝑗𝑚 =  −
𝐺𝑗𝑚

𝐻𝑗𝑚 + λ
                                                                                                                                        (13) 223 

For regression with MSE used for the loss function, the gradient 𝐺𝑗𝑚 is the sum of 224 

negative residuals, or − ∑ (𝑦𝑖 − �̂�𝑖)
𝑛
𝑖=1 , and the Hessian 𝐻𝑗𝑚 is the number of residuals 225 

𝑛. 226 

Therefore, Equation 13 is used to calculate the output value for a leaf. 227 

7)  Replace 𝑤𝑗𝑚 in Equation 11 with Equation 13; then, the objective J𝑚 in Equation 11 228 

for 229 

 the best tree structure can be written as Equation 14. 230 
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J𝑚 = −
1

2
∑ [

𝑇

𝑗 = 1

𝐺𝑗𝑚
2

𝐻𝑗𝑚 + λ
] + γT                                                                                                                             (14) 231 

2.3 Data 232 

The predictive model was developed to monitor NOx emissions from a boiler. The NOx 233 

emissions were continuously monitored by a CEMS unit. The CEMS unit was an in situ 234 

monitoring system with path in situ analyzers manufactured by SICK. The NOx 235 

concentrations were measured by a differential optical absorption spectroscopy method. The 236 

NOx concentration range of the analyzer in the CEMS unit was 0–100 ppm by volume on a 237 

wet basis with 0-80 ppm for NO and 0-20 ppm for NO2. The CEMS unit measured NOx in 238 

ppm, exhaust temperature, and exhaust flow and then converted NOx ppm into kg/h. The 239 

NOx mass flow, exhaust temperature, and exhaust flow data were reported to Alberta’s 240 

provincial regulatory agency under the facility’s operational permit. The facility CEMS report 241 

included two parts: station status (SS), which records the boiler downtime, and record 242 

details (RD), which records the detailed NOx emissions data, including substitute data when 243 

the CEMS unit was offline or in maintenance. 244 

We selected five process parameters as inputs for machine learning (Table 1). NOx in 245 

kg/h was the output of the model. The input parameters are also called PEMS sensors. We 246 

retrieved process data and NOx emissions data at one-minute intervals from 00:00 on 247 

January 1, 2019, to 23:59 on June 30, 2019, from a data storage system called the process 248 

historian database (PHD). The data of the five process parameters and NOx emissions 249 

formed a structured dataset with 260,641 rows and 6 columns. Each row is called one 250 

sample or example. The five sensors were integrated into the facility’s distributed control 251 

system and had routine preventative maintenance schedules for calibration and inspection 252 

to ensure that the instrument worked properly. The metered data obtained by the five 253 

sensors were automatically transferred to the PHD.  254 

Table 1: Model Inputs 255 
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Sensor ID Input (process) parameters Unit 

S0 fuel gas temperature °C 

S1 boiler feed water temperature °C 

S2 fuel gas flow m3/h 

S3 combustion air flow 103 m3/day 

S4 Exhaust gas temperature °C 

 256 

The following steps were taken to process the raw data: 257 

 Step 1: Remove samples when the boiler was offline based on the SS records 258 

because the 259 

facility does not report NOx emissions in these periods (7,326 samples removed). 260 

 Step 2: Remove samples that have substitute NOx emissions data (240 samples 261 

removed). 262 

 Step 3: Remove samples for which the fuel gas flow was 0 (515 samples removed). 263 

There was a delay between the time that the fuel gas supply was stopped and the 264 

time that the exhaust exited the stack. The CEMS recorded small NOx readings for 265 

approximately 10 minutes after the fuel gas readings were 0. The NOx values ranged 266 

from 0 to 5.3 kg/h and contributed to 0.007% of NOx emissions.  267 

 Step 4: Shuffle the remaining dataset (252,559 samples), and randomly split 80% of 268 

the samples into the training dataset and 20% into the test dataset. The training 269 

dataset had 202,047 samples and was used for model building and training. The test 270 

dataset had 50,512 samples and was used to test the model predictive power for an 271 

unbiased evaluation. 272 

2.4 Machine Learning and Model Evaluation 273 

The paired process data and CEMS-measured NOx emissions data were used to train the 274 

PEMS model using the XGBoost library (version 0.90) in a Python (version 3.7.4) 275 

environment. The CEMS was the reference method in this study. Ten-fold cross-validation 276 
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was used to select the best model during training. The following hyperparameters were 277 

tuned by a random search technique: 278 

 Number of trees to fit (n_estimator) 279 

 Maximum depth of a tree (max_depth) 280 

 Step-size shrinkage used in update (learning_rate, 𝜂) 281 

 Subsample ratio of columns when constructing each tree (colsample_bytree) 282 

 Minimum loss reduction required to make a further partition on a leaf node of the 283 

tree (gamma, γ) 284 

 L2 regularization on weights (reg_lambda, λ) 285 

 Minimum sum of instance weight needed in a child (min_child_weight) 286 

 A detailed explanation of each hyperparameter is provided in the XGBoost 287 

documentation (XGBoost developers, 2019). We used a random search method for model 288 

tuning using the scikit-learn (0.21.3) library. “Random search” means that combinations of 289 

the parameters are randomly selected to find the best model structure.  290 

 We compared the NOx outputs from the model using the test dataset with the 291 

corresponding CEMS-measured NOx data. The results were evaluated against the criteria 292 

outlined in the US EPA PS16 standard for PEMS precision. The criteria are presented in Table 293 

2. 294 

Table 2: Precision Requirements for Predictive Models 295 

Statistical test required by 

PS16 

Criteria 

Bias test 𝑑𝑎𝑣𝑔 ≤  |𝑐𝑐| 

The mean difference 𝑑𝑎𝑣𝑔 between Reference Method 

(RM) values and predicted values is less than or 

equal to the absolute value of the confidence 

coefficient (CC) at a 97.5% one-sided confidence 
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interval. 

Otherwise, a bias factor needs to be applied to the 

predicted values. 

Pearson correlation coefficient  r ≥ 0.8 

The correlation between CEMS values and predicted 

values must be 0.8 or greater. 

F-test 𝐹𝑣𝑎𝑙𝑢𝑒 ≤ 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

The variance ratio of predicted values and CEMS 

measured values must be less than or equal to the 

𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 value. 

 296 

The model was also assessed by root mean square error (RMSE), MAE and MSE using the 297 

test dataset. 298 

2.5 Model Sensitivity Test 299 

A model sensitivity test was used to evaluate changes in model performance using 300 

substitute data when one or more sensors failed. As required by the EU PEMS TS and the US 301 

EPA’s PEMS standards, a PEMS needs to have a sensor validation system to identify sensor 302 

failure hourly. The sensor validation system is responsible for generating substitute data, 303 

informing operators when sensors (process instruments, such as a fuel gas flow meter) 304 

need repair and indicating that the PEMS is out of control (US EPA, 2006). 305 

We followed the procedures for model sensitivity testing provided by the EU PEMS TS 306 

and US EPA CFR 40 Part 75 Subpart E. The procedures are summarized as follows: 307 

I. Select a set of reference sensor values and NOx emissions values. 308 

II. Artificially fail one sensor, and then run the predictive model using substitute data. 309 

We assessed the effect on the model’s accuracy by calculating the hourly percentage 310 

difference between the reference NOx values in Step I and the predicted values using 311 
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substitute data in Step II. Repeat this procedure for all the sensors used by the 312 

model individually. 313 

III. Flag the outputs as invalid if the hourly percentage difference is greater than 10%. 314 

IV. Perform a two-sensor failure test by repeating Step I, and then identify invalid data 315 

by conducting Step III. We only performed the test for up to two sensor failures 316 

because the US EPA requires a predictive model to have at least three input sensors, 317 

and this study used five inputs for machine learning. 318 

 We used directly measured sensor data and NOx values from 00:00 on March 30, 319 

2019, to 23:59 on April 5, 2019, for the set of reference sensor values and NOx emission 320 

values as required in Step I. The boiler was in a normal operational condition in this period. 321 

The data substitution method used for the sensitivity test is illustrated in Table 3. Data were 322 

substituted by interpolating the time distance. We tested sensor failure for one hour (1H), 323 

one day (1D), two days (2D), three days (3D), four days (4D), and five days (5D). 324 

According to Alberta’s CEMS code, a CEMS can only allow a sensor to be out of control or 325 

offline for up to five days. 326 

Table 3: Example of Data Substitution by Interpolating the Time Distance 327 

Timestamp Fuel Gas Flow (103 m3/h) Substitute data 

March 31, 2019 00:00 5  

March 31, 2019 00:01 Invalid data (sensor failure) 6 

March 31, 2019 00:02 Invalid data (sensor failure) 7 

March 31, 2019 00:03 Invalid data (sensor failure) 8 

March 31, 2019 00:04 9  

 328 

3.0         Results and Discussion 329 

3.1 Hyperparameter Tuning 330 

The results of the random search for the hyperparameters are presented in Table 4. The 331 

gradient boosting model comprised 38 trees 𝑓𝐾=38(𝑥), and the learning rate 𝜂 was 0.405. The 332 
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two user-defined values γ and λ in the regularization function were 0.12 and 69.05, 333 

respectively. 334 

Table 4: Random Search Results for Hyperparameters 335 

XGBoost Hyperparameters Values 

Number of trees to fit (n_estimator) 38 

Maximum depth of a tree (max_depth) 32 

Step-size shrinkage used in update (learning_rate, 𝜂) 0.41 

Subsample ratio of columns when constructing each tree (colsample_bytree) 0.96 

Minimum loss reduction required to make a further partition on a leaf node 

of the tree (gamma, γ) 

0.12 

L2 regularization on weights (reg_lambda, λ) 69.05 

Minimum sum of instance weight needed in a child (min_child_weight) 61.63 

 336 

3.2 Evaluation 337 

The results of the statistical tests are presented in Table 5. The model passed all three EPA 338 

requirements for precision. The RMSE was 0.14, and the MAE was 0.09. 339 

Table 5: Model Evaluation Results 340 

Statistical tests Results 

Bias test 𝑑𝑎𝑣𝑔  = −0.0011, |𝑐𝑐|  = 0.0012 

𝑑𝑎𝑣𝑔 <  |𝑐𝑐|; the model passed the EPA requirement. Bias 

adjustment is not needed.  

Pearson r value 𝑟 = 0.98 

𝑟 > 0.8; the model passed the EPA requirement. 

F-test 𝐹𝑣𝑎𝑙𝑢𝑒 =  0.96 , 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  = 1.01 

𝐹𝑣𝑎𝑙𝑢𝑒 < 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙; the model passed the EPA requirement. 

RMSE 0.14 
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MAE 0.09 

MSE 0.02 

Note: The statistical results were based on 50,512 test samples. 341 

 342 

 Figure 5 shows a comparison between the values measured by the reference method 343 

(CEMS) and the values predicted by the XGBoost model. Most of the data fall along the 1:1 344 

ratio line, which is the yellow dashed line. 345 

 346 

Figure 5: CEMS Values vs. XGBoost Predicted Values. The yellow dashed line is a 1:1 347 

line. The solid blue line is a regression line. (a) Plot is in full scale, (b) plot is a 348 

zoom-in plot of plot (a) for the range of 5 kg/h to 10 kg/h. The green circles 349 

represent data density. 350 

 351 

 Figure 6 shows the residuals of the XGBoost model. A total of 50,481 out of 50,512 352 

(99.94%) samples had residuals from -1 kg/h to 1 kg/h. Nine out of 50,512 samples had 353 

residuals over ±3 kg/h and are not shown in Figure 6. The largest absolute residual was 354 

7.26, and the smallest absolute residual was 2.7 × 10-6. 355 
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 356 

Figure 6: Residuals vs. XGBoost Predicted Values. The green circles represent data 357 

density. Nine samples are out of the residual range [-3,3] and are not shown in 358 

the plot. 359 

 360 

 XGBoost also ranks the importance of input parameters using the F score. The F 361 

score is calculated based on the frequency of one input parameter used in splitting the data 362 

across all the trees. In this model, fuel temperature and fuel flow were the most important 363 

inputs for the predictive model (Fig. 7). 364 
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 365 

Figure 7: Importance of the Input Parameters 366 

 367 

3.3 Model Sensitivity 368 

Figure 8 shows the absolute differences between the CEMS measured values and the 369 

predicted values with substitute data when one sensor failed. The largest differences were 370 

found when the boiler feed water temperature sensor failed for five days (3.28%) and when 371 

the exhaust gas temperature sensor failed for three days (3.01%). The differences were 372 

within the maximum allowable difference of 10%. The impact on the model performance of 373 

using substitute data for fuel gas temperature, fuel gas flow, and combustion air flow was 374 

less than 1% when one of the sensors failed for up to five days. 375 

The absolute differences between the CEMS measured values and the predicted 376 

values with substitute data for two-sensor failure are presented in Figure 9. The largest 377 

difference was found when fuel gas temperature and boiler feed water temperature failed 378 

together for five days (5.14%), but the difference was still within the 10% regulatory limit. 379 
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 380 

Figure 8: Sensitivity Test for One-Sensor Failure. The X-axis is the sensor ID. See 381 

Table 1 for details. 382 

 383 

 384 

Figure 9: Sensitivity Test for Two-Sensor Failure. The x-axis is a combination of sensor 385 

IDs. For example, S01 represents the failures of sensor 0, fuel gas temperature, 386 

and sensor 1, boiler feed water temperature. 387 
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 388 

3.4 Other Regulatory Requirements for PEMSs 389 

In addition to the precision requirements that are outlined in Table 2, the US EPA (2018) 390 

also has the following requirements to validate PEMSs for emissions monitoring (Table 6) in 391 

CFR 40 PS16 and Part 75. 392 

Table 6: Other Regulatory Requirements for PEMSs 393 

Requirement Criteria 

Reliability PEMS availability should be greater than or equal to 95%. 

Quality Assurance Input sensors must operate within the permitted ranges, 

such as model training ranges and manufacturing ranges.  

Daily check to ensure model is not modified  

Input sensors must be maintained in accordance with the 

manufacturer’s recommendations.  

A PEMS should be equipped with an alarm system. The 

alarm system will inform facility operators when the PEMS is 

out of control, such as sensors out of permitted ranges and 

sensor failures.  

Routine relative accuracy test audits must be conducted to 

ensure a constant performance of a PEMS after initial 

certification.  

 394 

3.5 Comparison with an Artificial Neural Network 395 

We also developed NOx predictive models using a feedforward neural network algorithm for 396 

comparison with the XGBoost model. The ANN model was trained using random search 397 

methods for the best model structure. The ANN model was trained and tested with the same 398 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

Page 24 of 34 

 

training and test datasets as the XGBoost model. The best ANN model had the following 399 

hyperparameters: 400 

 Number of hidden layers: 3 401 

 Units in each hidden layer: 128 402 

 Learning rate: 0.0005 403 

 L2 regularization: 0.01 404 

 Optimization: Nadam 405 

The ANN model inputs and output (input and output layers) were the same as those in 406 

XGBoost. 407 

The Pearson r value for the XGBoost model was 0.98, compared to 0.92 for the ANN model. 408 

The RMSE for the XGBoost model was 56% less than that for the ANN model. The MAE for 409 

the XGBoost model was 61% less than that for the ANN model (Table 7). The higher r value 410 

and lower RMSE indicated that the XGBoost model was a better model than the ANN model. 411 

Table 7: Comparison between XGBoost and the ANN using the Test Dataset 412 

Statistical tests XGBoost ANN 

Pearson r  0.98 0.92 

RMSE 0.14 0.32 

MAE 0.09 0.23 

Note: The test dataset contains 50,512 samples at 1-minute intervals. 413 

3.6 Model Performance under Non-normal Operating Conditions  414 

Under non-normal operating conditions (N-NOCs), such as equipment startup and 415 

shutdown, the RMSE increased from 0.13 to 0.72 for XGBoost (Fig. 10) compared to that of 416 

the normal operating condition (NOC). The Pearson r value between the CEMS measured 417 

values and the model predicted values decreased from 0.99 under the NOC to 0.91 under 418 

N-NOCs for the XGBoost model. The increase in RMSE and the decrease in the r value 419 

indicated that the XGBoost model did not perform as well under N-NOCs as under the NOC.  420 
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 421 

Figure 10: Non-Normal Operating Condition (N-NOC) vs. Normal Operating 422 

Condition (NOC). The NOC comprised 252,180 samples at 1-minute intervals. 423 

The N-NOC comprised 379 samples at 1-minute intervals. 424 

 425 

Using 1-minute high-resolution data, the ANN model generated higher predicted 426 

values when the NOx mass flow rate was less than 2 kg/h and generated lower predicted 427 

values when the NOx mass flow rate was greater than 8 kg/h. In contrast, the XGBoost 428 

model performed better for flow rates less than 2 kg/h than the ANN model. However, the 429 

XGBoost model still produced values less than 12 kg/h when the CEMS values were greater 430 

than 12 kg/h (Fig. 11).  431 
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 432 

Figure 11: CEMS Values vs. Predicted Values at 1-minute intervals. The yellow 433 

dashed line is the 1:1 ratio line. 434 

The facility reports its NOx emissions on an hourly basis, and the emission limit for 435 

the facility under its operation permit was set in kg/h. We averaged the 1-minute data to 436 

hourly data and compared the model performance. On an hourly basis, no emission rates 437 

were greater than 12 kg/h. Using the hourly data, the Pearson r was 0.93 for the ANN and 438 

0.99 for XGBoost. All data provided by XGBoost fall close to the 1:1 ratio line (Fig. 12). The 439 

XGBoost model showed a higher accuracy than the ANN model when reporting emissions on 440 

an hourly basis.  441 
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 442 

Figure 12: CEMS Values vs. Predicted Values at 1-hour intervals. The yellow 443 

dashed line is the 1:1 ratio line. 444 

 445 

When upset occurred, the XGBoost model exhibited better performance than the ANN 446 

model. However, the XGBoost model did not produce an accurate predictive value when the 447 

emission rate reached its peak. For example, at 14:14 on May 1, 2019, a process upset 448 

occurred, and the emission rate suddenly dropped from 7.5 kg/h to close to 0 and then 449 

increased to a peak of 16.9 kg/h in 42 minutes. After the peak, it took another 18 minutes 450 

for the emission rate to return to normal  7.8 kg/h. 451 

 452 

The upset event started at 14:14 on May 1, 2019, and ended at 15:14 on May 1, 2019. 453 

When reporting a 1-hour average emission rate, the absolute error of XGBoost for the peak 454 

emission rate at 14:00 was 1.14 kg/h (Fig. 14).  455 

 456 
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 458 

Figure 13: Model evaluation of a process upset event using data at 1-minute 459 

intervals. The data period is from 00:00 on May 1, 2019, to 23:59 on May 460 

1, 2019. 461 
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Figure 14: Model evaluation of a process upset event using data at 1-hour 465 

intervals. The data period is from 00:00 on May 1, 2019, to 23:00 on May 466 

1, 2019. 467 

 468 

3.7 Limitations and Future Study 469 

Although a predictive model is the core component of a PEMS, facility operators need to 470 

consider the following when building a PEMS on their own: 471 

1) Deploying predictive models to existing process control networks. Process control 472 

devices, such as distributed control systems, on process networks may not have 473 

sufficient computational power to run complicated predictive models. 474 

2) Integrating predictive models into existing data acquisition systems and reporting 475 

systems. 476 

3) Multiple models may be needed to replace one CEMS unit. For example, facilities in 477 

Alberta, Canada, are required to report exhaust flow and temperature, in addition to 478 

mass emission rates. 479 

Predictive modeling, including ANN and XGBoost algorithms, has shown great performance 480 

for emission monitoring. Computer-based emission monitoring methods can be installed on 481 

small stationary combustion sources that do not have regulatory requirements for 482 

continuous monitoring. A PEMS provides a more accurate emissions reporting method for 483 

small sources than engineering estimation methods with generic emissions factors that are 484 

normally used for regulatory reporting. Predictive modeling also offers the potential to 485 

construct a high-resolution network for continuously monitoring point source emissions 486 

without high capital cost. However, further research is needed because of the following 487 

limitations:  488 

 Predictive models tend to be equipment-specific. A model trained for one piece of 489 

equipment may not generate the same performance when applied to another piece 490 
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of equipment for air emissions monitoring. Model generalization is needed for wider 491 

installation and application.  492 

 The performance of predictive models for low and high emission rates (or low and 493 

high emission concentrations) is not as good as that for normal emission rates. 494 

Accurately predicting high emission rates is critical because facility operators must 495 

demonstrate through monitoring methods that their operations meet the maximum 496 

emission limits set by the regulator. In this study, the XGBoost model generated 497 

lower predictive values than the CEMS measured values for high emission rates.  498 

3.8 Conclusions 499 

Open-source libraries can play a critical role in the wider installation of PEMSs because 500 

commercial PEMSs reportedly have initial capital costs similar to CEMSs. Compared with 501 

ANN-based predictive models, tree-based machine learning methods, such as XGBoost, are 502 

easier to understand, require less effort for data preprocessing, have fewer 503 

hyperparameters for model tuning, and need less time for model training. 504 

 In this study, we demonstrated that the XGBoost machine learning algorithm can be 505 

used to build predictive models for NOx emissions monitoring. The NOx emission values 506 

predicted by the best model structure using random search techniques meet all the 507 

statistical requirements outlined by US EPA PS16. The Pearson correlation r value between 508 

the XGBoost-predicted NOx values and the CEMS-measured NOx values was 0.98 at 1-509 

minute intervals. The RMSE and MAE using 1-minute interval data in the test dataset were 510 

0.14 and 0.09, respectively. 511 

In addition, we proposed a data imputation method for sensor failure and tested 512 

model sensitivity using this method. Although there are many more complex data 513 

imputation methods, such as K-nearest neighbors, K-means, and multiple imputations by 514 

chained equations (Schmitt et al., 2015), we demonstrated a simple imputation by 515 

interpolating that the time distance is enough to meet regulatory requirements for 516 
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predictive emissions modeling. The model inputs are univariate time series data, and linear 517 

interpolation is effective for missing data imputation because the precision of the XGBoost 518 

model used in this study changed only up to 5.14% using substitute data when two sensors 519 

failed for up to five days. 520 

Further research is still needed to improve model precision for non-normal operating 521 

conditions, especially when emission rates (concentrations) are high, because the precision 522 

determines if facilities meet the emission limits required by regulations.  523 
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