Development of a predictive emissions model using a gradient boosting machine learning method

Minxing Si, Ke Du



 PII:
 S2352-1864(20)31328-6

 DOI:
 https://doi.org/10.1016/j.eti.2020.101028

 Reference:
 ETI 101028

To appear in: Environmental Technology & Innovation

Received date : 31 March 2020 Revised date : 30 June 2020 Accepted date : 2 July 2020

Please cite this article as: M. Si and K. Du, Development of a predictive emissions model using a gradient boosting machine learning method. *Environmental Technology & Innovation* (2020), doi: https://doi.org/10.1016/j.eti.2020.101028.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier B.V. All rights reserved.

**Journal Pre-proof** 

# **Development of a Predictive Emissions Model using a Gradient Boosting Machine Learning Method** Minxing Si<sup>a,b</sup> and Ke Du<sup>a\*</sup> <sup>a</sup> Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary AB T2N 1N4 Canada <sup>b</sup> Tetra Tech Canada Inc., 140 Quarry Park Blvd Suite 110, Calgary, AB T2C 3G3 Canada \*Corresponding author: Ke Du (email: <u>kddu@ucalgary.ca</u>)

ABSTRACT: Predictive emissions monitoring systems (PEMSs) are alternatives to continuous emissions monitoring systems (CEMSs) for monitoring air pollutants, such as NO<sub>x</sub>. Existing PEMSs and related research have focused on applying artificial neural network (ANN) algorithms. However, ANN-based models are treated as "black boxes". Regulators and decision makers without a statistical background often have difficulty understanding these models, which poses a significant challenge for a broader application of PEMSs. In this study, we proposed a tree-based ensemble method with gradient boosting techniques for PEMS development. Compared to ANNs, tree-based methods are easier to understand and require less effort to preprocess data, fewer hyperparameters for model tuning, and less time for model training. We developed a predictive model using a gradient boosting machine learning library called XGBoost to monitor NOx emissions from a boiler located in Alberta, Canada. The model uses five process parameters as inputs and the predicted NO<sub>x</sub> emissions as output. We trained the model with 202,047 samples using random search methods to determine the best model and tested the model with 50,512 samples. We evaluated the test results against US EPA PEMS standards. The model passed all the statistical tests for precision outlined by US EPA Performance Specification 16. The Pearson correlation r value was 0.98 between the XGBoost-predicted NO<sub>x</sub> values and the CEMS-measured NO<sub>x</sub> values. The RMSE was 0.14, and the MAE was 0.09. We conclude that XGBoost is a good option for developing PEMSs. Facility operators can use the method provided in this study to develop PEMSs by themselves using the open-source library XGBoost at no cost. **KEYWORDS**: Predictive Emissions Monitoring System, PEMS, XGBoost, Gradient Boosting,

NO<sub>x</sub> Monitoring

Page 2 of 34

#### Introduction 1.0

The nitrogen oxides  $(NO_x)$  family comprises seven compounds, including nitric oxide (NO), nitrogen dioxide (NO<sub>2</sub>), and other oxides of nitrogen derivatives (US EPA, 1999). NO<sub>x</sub>, or oxides of nitrogen, commonly refers to NO and NO<sub>2</sub> together (Environment and Climate Change Canada, 2019; US EPA, 2019). NO<sub>x</sub> has significant adverse environmental and health effects, contributing to acid rain and smog and forming fine particles (PM) and ozone in the ambient air (tropospheric ozone or ground-level ozone) (Boningari and Smirniotis, 2016; Mauzerall et al., 2005). Industrial facilities with large stationary combustion sources are typically required to be equipped with one or more continuous emissions monitoring systems (CEMSs) to monitor NO<sub>x</sub> emissions for compliance with regulatory emission limits (Cozza and Faulkner, 1993; US EPA, 1994; White, 1993). However, CEMSs require high initial capital and operating costs, as well as frequent maintenance and operator training (Roth and Lawrence, 2010).

To address these issues with CEMSs and offer an alternative for monitoring NOx, a predictive emissions monitoring system (PEMS) was first developed in the 1970s (Hung, 1975). Since 1990, PEMS applications have been widely reported for a range of emission sources in various industries (Chien et al., 2010, 2005; Cooper and Andreasson, 1999; Hung and Langenbacher, 1995; Kamas and Keeler, 1995). The first generation of PEMSs was developed using first principles methods based on energy and mass balances (Chien et al., 2005; Faravelli et al., 2000; Harnevie et al., 1996). The second generation of PEMSs explored the statistical relationship between operating parameters and air emissions (Chien et al., 2010; Lee et al., 2005; Saiepour et al., 2006). When the operating parameters used to build statistical models were selected, thermodynamics was often considered. The second generation was referred to as statistical methods or statistical hybrid methods. The most recent PEMSs, or third generation, were developed using machine learning algorithms called artificial neural networks (ANNs) (Cuccu et al., 2017; Vanderhaegen et al., 2010). An ANN-

Page 3 of 34

based PEMS is more flexible than a PEMS of the first or second generations because it can use operating parameters beyond those related to NO<sub>x</sub> formation. Botros *et al.* (2011) developed ANN-based predictive models for NO<sub>x</sub> monitoring in gas turbines in natural gas compressor stations. The models used four process parameters and had one hidden layer with two units. The study found that the uncertainty of NO<sub>x</sub> prediction was  $\pm 2.5\%$  to  $\pm 6\%$ . Zain and Kien Kek Chua (2011) developed ANN-based models for CO, O<sub>2</sub>, NO<sub>x</sub>, and CO<sub>2</sub> monitoring in an incinerator. The ANN used three process parameters as the input layer and had two hidden layers. Each hidden layer had 5 units. The study concluded that the accuracy of the models was 98%. Tan et al. (2016) developed NO<sub>x</sub> predictive models using a single-hidden-layer feedforward ANN for process optimization and emission reductions in a 700 MW coal-fired boiler. The mean square error (MSE) was 62.1, and the correlation coefficient was 0.98. Si et al. (2019) developed ANN-based models for NOx monitoring in a cogeneration unit. The best model had a mean absolute error (MAE) of 0.60 and Pearson r value of 0.95.

The primary regulatory frameworks for using PEMSs as compliance monitoring and reporting tools were developed by the United States Environmental Protection Agency (US EPA) under Title 40 of the Code of Federal Regulations (CFR), specifically Performance Specification 16 (PS16) and Part 75 (US EPA, 2009). The European Committee for Standardization (CEN) published a technical specification (TS) for PEMS applicability, execution, and quality assurance (CEN/TS 17198:2018) in August 2018 (European Committee for Standardization, 2018). Many countries outside of the US and Europe, such as Gulf countries, use these guidelines for PEMS certification, especially the US EPA standards (ABB S.p.A., 2014). In the US, the first regulatory approval of a PEMS for emissions monitoring and reporting occurred in June 1993 (Kamas and Keeler, 1995). To <sub>56</sub> 101 date, a few hundred PEMSs have been installed worldwide and are used for compliance

Page 4 of 34

reporting, offline what-if analysis, and analyzer availability enhancement (Eisenmann et al.,2014; Swanson, 2018).

Although PEMSs were developed 50 years ago and have evolved from first principlesbased models to machine learning-based models to become more accurate, they have not been widely installed and used because facility operators did not realize significant cost savings when using commercial PEMSs, especially for the initial capital cost. For example, Arkansas Electric Cooperative Corporation installed seven PEMSs for emissions monitoring and regulatory reporting. They estimated that the initial capital costs of installing commercial PEMSs were similar to the costs of installing CEMSs (Bivens, 2019, 2017) because of the software licensing fee and consulting cost for model training and setup.

Si et al. were the first to introduce open-source machine learning libraries for PEMS 28 113 development. Their study built feedforward ANN-based models for NO<sub>x</sub> monitoring using Google's TensorFlow and Keras libraries and aimed to provide facility operators with 30 114 <sup>32</sup> 115 methods to develop predictive emissions models by themselves (Si et al., 2019). However, <sup>34</sup> 116 the models developed in the study inherited some common drawbacks of ANN algorithms. For example, ANN models are treated as "black boxes" because strong statistical knowledge is needed to understand ANN algorithms. Decision makers and regulators are often skeptical about the outputs produced from these black boxes due to the lack of statistical background (Guelman, 2012). 43 120

In this study, we developed a predictive model for NO<sub>x</sub> emission monitoring and
 regulatory reporting using a tree-based ensemble machine learning algorithm called
 XGBoost. XGBoost was implemented as an open-source machine learning library and
 developed based on gradient boosting techniques introduced by Friedman (2001). Gradient
 boosting has been successfully applied to tree models (Guelman, 2012; Krauss et al., 2017;
 Semanjski and Gautama, 2015; Zhang and Haghani, 2015). Gradient tree boosting adds
 multiple weak trees together and forms a strong learner to optimize predictive performance.

This method is also known as a gradient boosted regression tree (GBRT) and a gradient boosting machine (GBM). XGBoost was first released in 2014 (Labram, 2019) and has since become popular among machine learning practitioners. In 2015, 17 out of 29 winners in the Kaggle machine learning competitions used the XGBoost algorithm (Nielsen, 2016). XGBoost is easier to interpret than ANN-based algorithms, so decision makers and regulators can better understand how the predictive models work and how outcomes are produced. In addition, XGBoost requires less effort for data preprocessing and has fewer hyperparameters for tuning.

Existing PEMSs and related research have focused on the use of ANN algorithms. To the best of our knowledge, the gradient boosting approach has not been applied to predictive models for emissions monitoring and reporting, even though PEMSs have been **139** researched, developed, and installed for almost five decades. In addition, according to US EPA and EU PEMS standards, PEMSs need to be able to generate data for substitution when **140** <sup>32</sup> 141 one or more process parameters (sensors) fail, such as missing data. Previous studies <sup>34</sup> 142 removed missing data for model development. In this study, we test a method for data substitution to bridge this gap. Using the methods presented in this study, facility operators will have more complete knowledge to develop their emission models by themselves and obtain regulatory approval.

43 146 2.0

#### Material and Method

#### Tree-based Methods and Tree-based Ensemble Learning 2.1

Tree-based methods build predictive models by repeatedly splitting the predictor space into rectangles by some criteria and then fitting a model for each rectangle. Figure 1 shows that the space for two predictors, fuel gas flow and exhaust gas temperature, is divided into three rectangles, as summarized in Figure 2. R represents the divided areas in Figure 1 called the terminal regions or leaf nodes in the tree model shown in Figure 2. *j* represents

Page 6 of 34





A prediction method using tree-based ensemble learning is presented in Figure 3.



#### 169 Figure 3: Example of Tree-based Ensemble Learning

#### 0 2.2 Gradient Boosting and XGBoost

Boosting is an ensemble method that combines multiple weak learners to produce a power learner. A boosting method adds new learners  $f_x$  (tree or estimator) sequentially. At iteration k, the new estimator  $f_k(x_i)$  tries to correct the previous prediction  $\hat{y}_i^{(k-1)}$  or  $F^{(k-1)}(x)$ and generates a new prediction  $\hat{y}_i^{(k)}$  or  $F^{(k)}(x)$ , and this process can be written as Equation  $F^{(k-1)}(x)$  and  $F^{(k)}(x)$  represent the functions that produce the predicted values at iterations k - 1 and k, respectively. Iteration k also indicates that k trees are ensembled in the model.  $\hat{y}_i^{(k)} = \hat{y}_i^{(k-1)} + f_k(x_i)$ 

Algorithm 1: Gradient Tree Boosting AlgorithmNoteInput:Dataset 
$$\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$$
 $x_i$  represents the values of the inputPage 8 of 34

(2)

| $y_i$ represents the observed value for<br>the i <sup>th</sup> sample.<br>n represents the number of samples<br>in the training dataset<br>$L = \frac{(Observed - Predicted)^2}{2}$<br>F(x) is the function that produces<br>the predicted values<br>$\rho$ is an initial predicted value. $\rho$<br>could be the mean of the observed<br>values. In XGBoost, the default<br>value is 0.5.<br>k is the k <sup>th</sup> tree |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| the i <sup>th</sup> sample.<br><i>n</i> represents the number of samples<br>in the training dataset<br>$L = \frac{(Observed - Predicted)^2}{2}$ <i>F</i> ( <i>x</i> ) is the function that produces<br>the predicted values<br>$\rho$ is an initial predicted value. $\rho$<br>could be the mean of the observed<br>values. In XGBoost, the default<br>value is 0.5.<br><i>k</i> is the k <sup>th</sup> tree                |
| <i>n</i> represents the number of samples<br>in the training dataset<br>$L = \frac{(Observed - Predicted)^2}{2}$ $F(x)$ is the function that produces<br>the predicted values<br>$\rho$ is an initial predicted value. $\rho$<br>could be the mean of the observed<br>values. In XGBoost, the default<br>value is 0.5.<br><i>k</i> is the k <sup>th</sup> tree                                                              |
| in the training dataset<br>$L = \frac{(Observed - Predicted)^2}{2}$ $F(x)$ is the function that produces<br>the predicted values<br>$\rho$ is an initial predicted value. $\rho$<br>could be the mean of the observed<br>values. In XGBoost, the default<br>value is 0.5.<br>k is the k <sup>th</sup> tree                                                                                                                  |
| $L = \frac{(Observed - Predicted)^2}{2}$ $F(x) \text{ is the function that produces}$ the predicted values $\rho \text{ is an initial predicted value. } \rho$ could be the mean of the observed values. In XGBoost, the default value is 0.5. $k \text{ is the } k^{\text{th}} \text{ tree}$                                                                                                                               |
| F(x) is the function that produces<br>the predicted values<br>$\rho$ is an initial predicted value. $\rho$<br>could be the mean of the observed<br>values. In XGBoost, the default<br>value is 0.5.<br>k is the k <sup>th</sup> tree                                                                                                                                                                                        |
| the predicted values<br>$\rho$ is an initial predicted value. $\rho$<br>could be the mean of the observed<br>values. In XGBoost, the default<br>value is 0.5.<br>k is the k <sup>th</sup> tree                                                                                                                                                                                                                              |
| $\rho$ is an initial predicted value. $\rho$<br>could be the mean of the observed<br>values. In XGBoost, the default<br>value is 0.5.<br>k is the k <sup>th</sup> tree                                                                                                                                                                                                                                                      |
| could be the mean of the observed<br>values. In XGBoost, the default<br>value is 0.5.<br><i>k</i> is the k <sup>th</sup> tree                                                                                                                                                                                                                                                                                               |
| values. In XGBoost, the default<br>value is 0.5.<br><i>k</i> is the k <sup>th</sup> tree                                                                                                                                                                                                                                                                                                                                    |
| value is 0.5. $k$ is the k <sup>th</sup> tree                                                                                                                                                                                                                                                                                                                                                                               |
| k is the k <sup>th</sup> tree                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |
| i is the i <sup>th</sup> sample in the training                                                                                                                                                                                                                                                                                                                                                                             |
| data                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |
| j is the j <sup>th</sup> terminal region (leaf)                                                                                                                                                                                                                                                                                                                                                                             |
| $\rho_k$ is the output of the $\mathbf{k}^{\mathrm{th}}$ estimator                                                                                                                                                                                                                                                                                                                                                          |
| (tree) $f_k(x)$                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |

 $F^{(k-1)}(x)$  is the previous prediction

 $\sum_{j=1}^{J_k}$  summation is used when a

in Step c).

 $\rho_{jk}$  is the output from the tree made

single sample ends up in multiple leaf nodes 3 Output  $F^{(K)}(\mathbf{x})$  $\hat{y}_i = F^0(x) + \sum_{k=1}^{K} f_k(x_i)$ The learning steps by gradient boosting are illustrated in Figure 4.  $\hat{y}_{i}^{0} = F^{0}(x)$  $\hat{y}_i^1 = F^1(x) = F^0 + f_1(\checkmark)$  $\hat{y}_i^2 = F^2(x) = F^0 + f_1(-) + f_2(-)$  $\hat{y}_{i}^{k} = F^{k}(x) = F^{0} + f_{1}(\mathbf{x}) + f_{2}(\mathbf{x}) + \mathbf{o} + f_{k}(\mathbf{x})$ Figure 4: Illustration of Gradient Boosting Unlike traditional boosting, XGBoost adds a regularization function to prevent overfitting and optimizes the loss function by a Taylor expansion (Chen and Guestrin, 2016). The objective function J in XGBoost describes the model's performance and can be written as Equation 3:  $J = \sum_{i=0}^{n} L(y_i, \hat{y}_i) + \sum_{i=0}^{K} \Omega(f_k)$ (3) where n is the number of training samples and  $\Omega(f_k)$  is a regularization function.  $\Omega(f_k)$  is written as Equation 4:

Page 10 of 34

to determine the output values of each leaf

 $F^{(k)}(x) = F^{(k-1)}(x) + \eta \times \sum_{i=1}^{j_k} \rho_{jk} \mathbf{I}(x \in R_{jk})$ 

d) Update

$$\Omega(f_k) = \gamma \mathbf{T} + \frac{1}{2} \lambda \sum_{j=0}^{T} \mathbf{w}_j^2$$
(4)

where *T* is the number of leaf nodes and  $\gamma$  and  $\lambda$  are hyperparameters in XGBoost that users can define. *w* is the leaf weight (i.e., a predictive value in a terminal node). The objective function for the m<sup>th</sup> iteration can be written as Equation 5, where m represents elements of *K* iterations ( $m \in \{k_1, k_2, ..., K\}$ ).

$$J^{m} = \sum_{i=1}^{n} L(y_{i}, \hat{y}_{i}^{(m)}) + \sum_{k=1}^{m} \Omega(f_{m}(x_{i})) = \sum_{i=1}^{n} L(y_{i}, \hat{y}_{i}^{m-1} + f_{m}(x_{i})) + \sum_{k=1}^{m} \Omega(f_{m}(x_{i}))$$
(5)

To optimize the objective function, the XGBoost algorithm takes the following steps:

 Use a second-order Taylor expansion to approximate the derivatives, and write J<sup>m</sup> as Equation 6:

$$J^{m} \simeq \sum_{i=1}^{n} [L(y_{i}, \hat{y}_{i}^{(m-1)}) + g_{m}(x_{i})f_{m}(x_{i}) + \frac{1}{2}h_{m}(x_{i})f_{m}(x_{i})^{2}] + \sum_{k=1}^{m} \Omega(f_{m}(x_{i}))$$
(6)

where  $L(y_i, \hat{y}_i^{(m-1)})$  is the loss function for the previous prediction and  $g_m(x_i)$  represents the first derivative of the loss function  $L(y_i, \hat{y}_i^{(m-1)})$ , called the gradient.  $h_m(x_i)$  is the second derivative of the loss function  $L(y_i, \hat{y}_i^{(m-1)})$ , called the Hessian.  $g_m(x_i)$  and  $h_m(x_i)$ are written as follows:

$$g_m(x_i) = \frac{dL(y_i, \hat{y}_i^{(m-1)})}{d\hat{y}_i^{(m-1)}} \text{ and } h_m(x_i) = \frac{d^2L(y_i, \hat{y}_i^{(m-1)})}{d(\hat{y}_i^{(m-1)})^2}$$

2) Remove the constant term  $\sum_{i=1}^{n} L(y_i, \hat{y}_i^{(m-1)})$  because it is not related to the output values  $f_m(x_i)$  and has no effect on optimizing the objective function. Equation 6 is then written as Equation 7:

$$J^{m} = \sum_{i=1}^{n} [g_{m}(x_{i})f_{m}(x_{i}) + \frac{1}{2}h_{m}(x_{i})f_{m}(x_{i})^{2}] + \sum_{k=1}^{m} \Omega(f_{m}(x_{i}))$$
(7)

3) Replace  $f_m(x_i)$  with the sum of the tree leaves written as Equation 8. The sum of the tree leaves is the sum of the outputs of the trees:

$$f_m(x_i) = \sum_{j=1}^T w_{jm} l(x \in R_{jm})$$
(8)

Replace Equation 7 with Equation 8, and 
$$J^m$$
 is written as Equation 9:

$$J^{m} = \sum_{i=1}^{n} [g_{m}(x_{i}) \sum_{j=1}^{T} w_{jm} + \frac{1}{2} h_{m}(x_{i}) \sum_{j=1}^{T} w_{jm}^{2}] + \gamma T + \frac{1}{2} \lambda \sum_{j=1}^{T} w_{jm}^{2}$$
(9)

The sums of  $g_m(x_i)$  and  $h_m(x_i)$  can be simplified as in Equation 10:

$$G_{jm} = \sum_{i \in I_{jm}} g_m(x_i), H_{jm} = \sum_{i \in I_{jm}} h_m(x_i)$$

$$(10)$$

where  $I_{jm}$  denotes the set of training samples (instances,  $x_i$ ) in the region (leaf)  $R_{jm}$ . 4) Replace  $g_m(x_i)$  and  $h_m(x_i)$  in Equation 9 with Equation 10. J<sup>m</sup> is written as Equation

20 215 

**227** 

$$J^{m} = \sum_{j=1}^{T} [G_{jm}w_{jm} + \frac{1}{2}(H_{jm} + \lambda)w_{jm}^{2}] + \gamma T$$
(11)

5) Minimize the objective  $J^m$  in Equation 11 by the weight  $w_{jm}$  for each leaf using the

derivative of  $J^m$  with respect to  $w_{jm}$ , as written in Equation 12.

$$\frac{\partial J^m}{\partial w_{jm}} = G_{jm} + (H_{jm} + \lambda)w_{jm} = 0$$
(12)

#### 6) Calculate the best weight $w_{jm}$ using Equation 13.

$$w_{jm} = -\frac{G_{jm}}{H_{jm} + \lambda} \tag{13}$$

For regression with MSE used for the loss function, the gradient  $G_{jm}$  is the sum of negative residuals, or  $-\sum_{i=1}^{n}(y_i - \hat{y}_i)$ , and the Hessian  $H_{jm}$  is the number of residuals

#### Therefore, Equation 13 is used to calculate the output value for a leaf.

7) Replace  $w_{jm}$  in Equation 11 with Equation 13; then, the objective  $J^m$  in Equation 11 **228** 

for

n.

#### the best tree structure can be written as Equation 14.

$$\mathbf{J}^m = -\frac{1}{2} \sum_{j=1}^{T} \left[ \frac{G_{jm}^2}{H_{jm} + \lambda} \right] + \gamma \mathbf{T}$$

(14)

#### 2.3 Data

б 

The predictive model was developed to monitor NO<sub>x</sub> emissions from a boiler. The NO<sub>x</sub> **234** emissions were continuously monitored by a CEMS unit. The CEMS unit was an in situ **235** monitoring system with path in situ analyzers manufactured by SICK. The NO<sub>x</sub> <sup>17</sup> 236 concentrations were measured by a differential optical absorption spectroscopy method. The NO<sub>x</sub> concentration range of the analyzer in the CEMS unit was 0-100 ppm by volume on a wet basis with 0-80 ppm for NO and 0-20 ppm for NO<sub>2</sub>. The CEMS unit measured NO<sub>x</sub> in ppm, exhaust temperature, and exhaust flow and then converted NO<sub>x</sub> ppm into kg/h. The NO<sub>x</sub> mass flow, exhaust temperature, and exhaust flow data were reported to Alberta's **241** provincial regulatory agency under the facility's operational permit. The facility CEMS report **242** included two parts: station status (SS), which records the boiler downtime, and record <sup>32</sup> 243 details (RD), which records the detailed NO<sub>x</sub> emissions data, including substitute data when the CEMS unit was offline or in maintenance.

We selected five process parameters as inputs for machine learning (Table 1). NOx in kg/h was the output of the model. The input parameters are also called PEMS sensors. We retrieved process data and NO<sub>x</sub> emissions data at one-minute intervals from 00:00 on January 1, 2019, to 23:59 on June 30, 2019, from a data storage system called the process **248 249** historian database (PHD). The data of the five process parameters and NO<sub>x</sub> emissions formed a structured dataset with 260,641 rows and 6 columns. Each row is called one sample or example. The five sensors were integrated into the facility's distributed control system and had routine preventative maintenance schedules for calibration and inspection to ensure that the instrument worked properly. The metered data obtained by the five **254** sensors were automatically transferred to the PHD.

- **255 Table 1: Model Inputs**

| Sensor ID                          | Input (process) parameters                                                         | Unit                                            |
|------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------|
| S0                                 | fuel gas temperature                                                               | °C                                              |
| S1                                 | boiler feed water temperature                                                      | °C                                              |
| S2                                 | fuel gas flow                                                                      | m³/h                                            |
| S3                                 | combustion air flow                                                                | 10 <sup>3</sup> m <sup>3</sup> /day             |
| S4                                 | Exhaust gas temperature                                                            | °C                                              |
| The following step<br>• Step 1: Re | os were taken to process the raw data:<br>move samples when the boiler was offline | e based on the SS records                       |
| because th                         | e                                                                                  |                                                 |
| facility doe                       | s not report $NO_x$ emissions in these period                                      | ds (7,326 samples removed).                     |
| • Step 2: Re                       | move samples that have substitute $NO_x$ e                                         | missions data (240 samples                      |
| removed).                          |                                                                                    |                                                 |
| • Step 3: Re                       | move samples for which the fuel gas flow                                           | was 0 (515 samples removed).                    |
| There was                          | a delay between the time that the fuel ga                                          | is supply was stopped and the                   |
| time that t                        | he exhaust exited the stack. The CEMS re                                           | corded small $NO_x$ readings for                |
| approxima                          | tely 10 minutes after the fuel gas reading                                         | s were 0. The $NO_x$ values ranged              |
| from 0 to 5                        | 5.3 kg/h and contributed to 0.007% of NC                                           | D <sub>x</sub> emissions.                       |
| • Step 4: Sh                       | uffle the remaining dataset (252,559 sam                                           | ples), and randomly split 80% o                 |
| the sample                         | es into the training dataset and 20% into t                                        | the test dataset. The training                  |
| dataset ha                         | d 202,047 samples and was used for mod                                             | lel building and training. The test             |
| dataset ha                         | d 50,512 samples and was used to test th                                           | ne model predictive power for an                |
| unbiased e                         | valuation.                                                                         |                                                 |
| 2.4 Machi                          | ne Learning and Model Evaluation                                                   |                                                 |
| The paired proces                  | s data and CEMS-measured $NO_x$ emission                                           | s data were used to train the                   |
| PEMS model using                   | the XGBoost library (version 0.90) in a F                                          | Python (version 3.7.4)                          |
| environment. The                   | CEMS was the reference method in this s                                            | tudy. Ten-fold cross-validation<br>Page 14 of 3 |

| 2           |     |         |                                                                                           |
|-------------|-----|---------|-------------------------------------------------------------------------------------------|
| 3<br>4<br>5 | 277 | was us  | sed to select the best model during training. The following hyperparameters were          |
| 6<br>7      | 278 | tuned   | by a random search technique:                                                             |
| 8<br>9      | 279 | •       | Number of trees to fit (n_estimator)                                                      |
| 10<br>11    | 280 | •       | Maximum depth of a tree (max_depth)                                                       |
| 12<br>13    | 281 | •       | Step-size shrinkage used in update (learning_rate, $\eta$ )                               |
| 14<br>15    | 282 | •       | Subsample ratio of columns when constructing each tree (colsample_bytree)                 |
| 16<br>17    | 283 | •       | Minimum loss reduction required to make a further partition on a leaf node of the         |
| 19<br>20    | 284 |         | tree (gamma, γ)                                                                           |
| 21<br>22    | 285 | •       | L2 regularization on weights (reg_lambda, $\lambda$ )                                     |
| 23<br>24    | 286 | •       | Minimum sum of instance weight needed in a child (min_child_weight)                       |
| 25<br>26    | 287 |         | A detailed explanation of each hyperparameter is provided in the XGBoost                  |
| 27<br>28    | 288 | docum   | entation (XGBoost developers, 2019). We used a random search method for model             |
| 29<br>30    | 289 | tuning  | using the scikit-learn (0.21.3) library. "Random search" means that combinations of       |
| 31<br>32    | 290 | the pa  | rameters are randomly selected to find the best model structure.                          |
| 34<br>35    | 291 |         | We compared the $NO_x$ outputs from the model using the test dataset with the             |
| 36<br>37    | 292 | corres  | ponding CEMS-measured NO $_{\rm x}$ data. The results were evaluated against the criteria |
| 38<br>39    | 293 | outline | ed in the US EPA PS16 standard for PEMS precision. The criteria are presented in Table    |
| 40<br>41    | 294 | 2.      |                                                                                           |
| 42<br>43    | 295 | Table   | 2: Precision Requirements for Predictive Models                                           |

Statistical test required by Criteria **PS16** Bias test  $d_{avg} \leq |cc|$ The mean difference  $d_{avg}$  between Reference Method (RM) values and predicted values is less than or equal to the absolute value of the confidence coefficient (CC) at a 97.5% one-sided confidence Page 15 of 34

|                                 | interval.                                           |
|---------------------------------|-----------------------------------------------------|
|                                 | Otherwise, a bias factor needs to be applied to the |
|                                 | predicted values.                                   |
| Pearson correlation coefficient | r ≥ 0.8                                             |
|                                 | The correlation between CEMS values and predicted   |
|                                 | values must be 0.8 or greater.                      |
| F-test                          | $F_{value} \leq F_{critical}$                       |
|                                 | The variance ratio of predicted values and CEMS     |
|                                 | measured values must be less than or equal to the   |
|                                 |                                                     |

The model was also assessed by root mean square error (RMSE), MAE and MSE using the **297** <sup>30</sup> 298 test dataset.

#### 2.5 **Model Sensitivity Test**

<sub>35</sub> 300 A model sensitivity test was used to evaluate changes in model performance using substitute data when one or more sensors failed. As required by the EU PEMS TS and the US **301 302** EPA's PEMS standards, a PEMS needs to have a sensor validation system to identify sensor 41 303 failure hourly. The sensor validation system is responsible for generating substitute data, <sup>43</sup> 304 informing operators when sensors (process instruments, such as a fuel gas flow meter) need repair and indicating that the PEMS is out of control (US EPA, 2006). We followed the procedures for model sensitivity testing provided by the EU PEMS TS and US EPA CFR 40 Part 75 Subpart E. The procedures are summarized as follows: <sub>52</sub> 308 Select a set of reference sensor values and NO<sub>x</sub> emissions values. Ι. **309** II. Artificially fail one sensor, and then run the predictive model using substitute data. We assessed the effect on the model's accuracy by calculating the hourly percentage

difference between the reference NOx values in Step I and the predicted values using

Page 16 of 34

substitute data in Step II. Repeat this procedure for all the sensors used by the model individually.

314 III. Flag the outputs as invalid if the hourly percentage difference is greater than 10%.

IV. Perform a two-sensor failure test by repeating Step I, and then identify invalid data
by conducting Step III. We only performed the test for up to two sensor failures
because the US EPA requires a predictive model to have at least three input sensors,
and this study used five inputs for machine learning.

We used directly measured sensor data and NO<sub>x</sub> values from 00:00 on March 30,

320 2019, to 23:59 on April 5, 2019, for the set of reference sensor values and NO<sub>x</sub> emission

321 values as required in Step I. The boiler was in a normal operational condition in this period.

The data substitution method used for the sensitivity test is illustrated in Table 3. Data were

substituted by interpolating the time distance. We tested sensor failure for one hour (1H),

one day (1D), two days (2D), three days (3D), four days (4D), and five days (5D).

According to Alberta's CEMS code, a CEMS can only allow a sensor to be out of control or offline for up to five days.

327 Table 3: Example of Data Substitution by Interpolating the Time Distance

| Timestamp            | Fuel Gas Flow (10 <sup>3</sup> m <sup>3</sup> /h) | Substitute data |
|----------------------|---------------------------------------------------|-----------------|
| March 31, 2019 00:00 | 5                                                 |                 |
| March 31, 2019 00:01 | Invalid data (sensor failure)                     | 6               |
| March 31, 2019 00:02 | Invalid data (sensor failure)                     | 7               |
| March 31, 2019 00:03 | Invalid data (sensor failure)                     | 8               |
| March 31, 2019 00:04 | 9                                                 |                 |

## 29 3.0 Results and Discussion

## 30 3.1 Hyperparameter Tuning

The results of the random search for the hyperparameters are presented in Table 4. The gradient boosting model comprised 38 trees  $f_{K=38}(x)$ , and the learning rate  $\eta$  was 0.405. The

Page 17 of 34

| 333 | two user-defined values $\gamma$ and $\lambda$ in the regularization function were 0.12 and 6 | 9.05,  |
|-----|-----------------------------------------------------------------------------------------------|--------|
| 334 | respectively.                                                                                 |        |
| 335 | Table 4: Random Search Results for Hyperparameters                                            |        |
|     | XGBoost Hyperparameters                                                                       | Values |
|     | Number of trees to fit (n_estimator)                                                          | 38     |
|     | Maximum depth of a tree (max_depth)                                                           | 32     |
|     | Step-size shrinkage used in update (learning_rate, $\eta$ )                                   | 0.41   |
|     | Subsample ratio of columns when constructing each tree (colsample_bytree)                     | 0.96   |
|     | Minimum loss reduction required to make a further partition on a leaf node                    | 0.12   |
|     | of the tree (gamma, $\gamma$ )                                                                | 0.12   |
|     | L2 regularization on weights (reg_lambda, $\lambda$ )                                         | 69.05  |
|     | Minimum sum of instance weight needed in a child (min_child_weight)                           | 61.63  |

#### Evaluation 3.2

The results of the statistical tests are presented in Table 5. The model passed all three EPA requirements for precision. The RMSE was 0.14, and the MAE was 0.09.

#### **340**

#### **Table 5: Model Evaluation Results**

| Statistical tests | Results                                                            |
|-------------------|--------------------------------------------------------------------|
| Bias test         | $d_{avg} = -0.0011,  cc  = 0.0012$                                 |
|                   | $d_{avg} <  cc $ ; the model passed the EPA requirement. Bias      |
|                   | adjustment is not needed.                                          |
| Pearson r value   | r = 0.98                                                           |
|                   | r > 0.8; the model passed the EPA requirement.                     |
| F-test            | $F_{value} = 0.96$ , $F_{critical} = 1.01$                         |
|                   | $F_{value} < F_{critical}$ ; the model passed the EPA requirement. |
| RMSE              | 0.14                                                               |







#### **366** Figure 7: Importance of the Input Parameters

**365** 

#### **Model Sensitivity** 3.3

Figure 8 shows the absolute differences between the CEMS measured values and the **370** predicted values with substitute data when one sensor failed. The largest differences were found when the boiler feed water temperature sensor failed for five days (3.28%) and when **371** <sup>38</sup> 372 the exhaust gas temperature sensor failed for three days (3.01%). The differences were within the maximum allowable difference of 10%. The impact on the model performance of using substitute data for fuel gas temperature, fuel gas flow, and combustion air flow was less than 1% when one of the sensors failed for up to five days.

The absolute differences between the CEMS measured values and the predicted values with substitute data for two-sensor failure are presented in Figure 9. The largest difference was found when fuel gas temperature and boiler feed water temperature failed **378 379** together for five days (5.14%), but the difference was still within the 10% regulatory limit.



and sensor 1, boiler feed water temperature.

S04

S12

S13

IDs. For example, S01 represents the failures of sensor 0, fuel gas temperature,

Figure 9: Sensitivity Test for Two-Sensor Failure. The x-axis is a combination of sensor

S14

S23

S24

S34

Page 22 of 34

62 63 64

61

47 48 49

50 51

55 56 **386** 

57

58 **387** 59 60 0%

S01

S02

S03

In addition to the precision requirements that are outlined in Table 2, the US EPA (2018) **391** also has the following requirements to validate PEMSs for emissions monitoring (Table 6) in **392** CFR 40 PS16 and Part 75.

#### <sup>15</sup> 393 **Table 6: Other Regulatory Requirements for PEMSs**

| Requirement       | Criteria                                                     |
|-------------------|--------------------------------------------------------------|
| Reliability       | PEMS availability should be greater than or equal to 95%.    |
| Quality Assurance | Input sensors must operate within the permitted ranges,      |
|                   | such as model training ranges and manufacturing ranges.      |
|                   | Daily check to ensure model is not modified                  |
|                   | Input sensors must be maintained in accordance with the      |
|                   | manufacturer's recommendations.                              |
|                   | A PEMS should be equipped with an alarm system. The          |
|                   | alarm system will inform facility operators when the PEMS is |
|                   | out of control, such as sensors out of permitted ranges and  |
|                   | sensor failures.                                             |
|                   | Routine relative accuracy test audits must be conducted to   |
|                   | ensure a constant performance of a PEMS after initial        |
|                   | certification.                                               |
|                   |                                                              |

#### 3.5 **Comparison with an Artificial Neural Network**

We also developed NO<sub>x</sub> predictive models using a feedforward neural network algorithm for comparison with the XGBoost model. The ANN model was trained using random search methods for the best model structure. The ANN model was trained and tested with the same 

| 1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| 3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 399                                                         | training and test                                                                                                                                                             | datasets as the XGBoost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | model. The best ANN model had the following                                                                                                                                                                                                                                                                                                                                                                                                          |    |  |
| 6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400                                                         | hyperparameters                                                                                                                                                               | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |
| 8<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 401                                                         | Number of                                                                                                                                                                     | hidden layers: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |
| 10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 402                                                         | Units in ea                                                                                                                                                                   | ich hidden layer: 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |
| 12<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 403                                                         | • Learning r                                                                                                                                                                  | ate: 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |
| 14<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 404                                                         | L2 regular                                                                                                                                                                    | ization: 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |
| 16<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 405                                                         | Optimizati                                                                                                                                                                    | on: Nadam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |
| 18<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 406                                                         | The ANN mod                                                                                                                                                                   | el inputs and output (inp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ut and output layers) were the same as those in                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 407                                                         | XGBoost.                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |
| 22<br>23<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 408                                                         | The Pearson r val                                                                                                                                                             | ue for the XGBoost mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | el was 0.98, compared to 0.92 for the ANN model.                                                                                                                                                                                                                                                                                                                                                                                                     |    |  |
| 25<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 409                                                         | The RMSE for the                                                                                                                                                              | XGBoost model was 56%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 less than that for the ANN model. The MAE for                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |
| 27<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 410                                                         | the XGBoost mod                                                                                                                                                               | el was 61% less than tha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | at for the ANN model (Table 7). The higher r value                                                                                                                                                                                                                                                                                                                                                                                                   | e  |  |
| 29<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 411                                                         | and lower RMSE i                                                                                                                                                              | ndicated that the XGBoos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | st model was a better model than the ANN model.                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             | Table 7: Comparison between VCPeers and the ANN weing the Test Peterst                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 412                                                         | Table 7: Compa                                                                                                                                                                | rison between XGBoos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t and the ANN using the Test Dataset                                                                                                                                                                                                                                                                                                                                                                                                                 |    |  |
| 32<br>33<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 412                                                         | Table 7: Compa                                                                                                                                                                | rison between XGBoos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t and the ANN using the Test Dataset                                                                                                                                                                                                                                                                                                                                                                                                                 |    |  |
| 32<br>33<br>34<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 412                                                         | Table 7: Compa<br>Statistical tests                                                                                                                                           | rison between XGBoos<br>XGBoost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t and the ANN using the Test Dataset                                                                                                                                                                                                                                                                                                                                                                                                                 |    |  |
| 32<br>33<br>34<br>35<br>36<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 412                                                         | Table 7: CompaStatistical testsPearson r                                                                                                                                      | rison between XGBoos XGBoost 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t and the ANN using the Test Dataset           ANN           0.92                                                                                                                                                                                                                                                                                                                                                                                    |    |  |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 412                                                         | Table 7: CompaStatistical testsPearson rRMSE                                                                                                                                  | rison between XGBoos<br>XGBoost<br>0.98<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t and the ANN using the Test Dataset          ANN         0.92         0.32                                                                                                                                                                                                                                                                                                                                                                          |    |  |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 412                                                         | Table 7: CompaStatistical testsPearson rRMSEMAE                                                                                                                               | rison between XGBoos<br>XGBoost<br>0.98<br>0.14<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t and the ANN using the Test Dataset          ANN         0.92         0.32         0.23                                                                                                                                                                                                                                                                                                                                                             |    |  |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 412<br>413                                                  | Table 7: CompaStatistical testsPearson rRMSEMAENote: The test data                                                                                                            | rison between XGBoos<br>XGBoost<br>0.98<br>0.14<br>0.09<br>taset contains 50,512 sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ANN   0.92   0.32   0.23   mples at 1-minute intervals.                                                                                                                                                                                                                                                                                                                                                                                              |    |  |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 412<br>413<br>414                                           | Table 7: CompaStatistical testsPearson rRMSEMAENote: The test da3.6Mode                                                                                                       | rison between XGBoos<br>XGBoost<br>0.98<br>0.14<br>0.09<br>taset contains 50,512 sa<br>I Performance under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ANN   0.92   0.32   0.23   mples at 1-minute intervals. Non-normal Operating Conditions                                                                                                                                                                                                                                                                                                                                                              |    |  |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 412<br>413<br>414<br>415                                    | Table 7: CompaStatistical testsPearson rRMSEMAENote: The test da3.6ModeUnder non-normal                                                                                       | rison between XGBoos<br>XGBoost<br>0.98<br>0.14<br>0.09<br>taset contains 50,512 sat<br>I Performance under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANN         0.92         0.32         0.23         mples at 1-minute intervals.         Non-normal Operating Conditions         -NOCs), such as equipment startup and                                                                                                                                                                                                                                                                                |    |  |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 412<br>413<br>414<br>415<br>416                             | Table 7: CompaStatistical testsPearson rRMSEMAENote: The test da3.6ModeUnder non-normalshutdown, the RM                                                                       | XGBoost         0.98         0.14         0.09         taset contains 50,512 sat         I Performance under         I operating conditions (N         ISE increased from 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANN         0.92         0.32         0.23         mples at 1-minute intervals.         Non-normal Operating Conditions         -NOCs), such as equipment startup and         to 0.72 for XGBoost (Fig. 10) compared to that of                                                                                                                                                                                                                      | -  |  |
| 32<br>33<br>34<br>35<br>37<br>38<br>40<br>41<br>423<br>44<br>45<br>46<br>47<br>48<br>49<br>512<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 412<br>413<br>414<br>415<br>416<br>417                      | Table 7: CompaStatistical testsPearson rRMSEMAENote: The test da3.6ModeUnder non-normalshutdown, the RMthe normal operation                                                   | rison between XGBoos<br>XGBoost<br>0.98<br>0.14<br>0.09<br>taset contains 50,512 sai<br>I Performance under<br>I operating conditions (N<br>1SE increased from 0.13 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANN         0.92         0.32         0.23         mples at 1-minute intervals.         Non-normal Operating Conditions         -NOCs), such as equipment startup and         to 0.72 for XGBoost (Fig. 10) compared to that of         e Pearson r value between the CEMS measured                                                                                                                                                                  | =  |  |
| 32<br>33<br>34<br>35<br>37<br>38<br>40<br>412<br>434<br>456<br>47<br>489<br>5512<br>553<br>552<br>553<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552<br>552  | 412<br>413<br>414<br>415<br>416<br>417<br>418               | Table 7: CompaStatistical testsPearson rRMSEMAENote: The test data3.6ModeUnder non-normalshutdown, the RMthe normal operativalues and the m                                   | XGBoost         0.98         0.14         0.09         taset contains 50,512 sat         Performance under         I operating conditions (N         1SE increased from 0.13 ft         ting condition (NOC). The         odel predicted values decord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ANN         0.92         0.32         0.23         mples at 1-minute intervals.         Non-normal Operating Conditions         -NOCs), such as equipment startup and         to 0.72 for XGBoost (Fig. 10) compared to that of         e Pearson r value between the CEMS measured         creased from 0.99 under the NOC to 0.91 under                                                                                                            | Ŧ  |  |
| 32<br>334<br>35<br>36<br>37<br>390<br>412<br>443<br>445<br>467<br>495<br>552<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>5555<br>555<br>555<br>5555<br>5555<br>5555<br>5555<br>5555<br>5555<br>5555     | 412<br>413<br>414<br>415<br>416<br>417<br>418<br>419        | Table 7: CompaStatistical testsPearson rRMSEMAENote: The test data3.6ModeUnder non-normalshutdown, the RMthe normal operativalues and the mN-NOCs for the X                   | XGBoost         0.98         0.14         0.09         taset contains 50,512 sat         Performance under         I operating conditions (N         ISE increased from 0.13 f         ting condition (NOC). The         odel predicted values dec         GBoost model. The increased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ANN         0.92         0.32         0.23         mples at 1-minute intervals.         Non-normal Operating Conditions         -NOCs), such as equipment startup and         to 0.72 for XGBoost (Fig. 10) compared to that of         e Pearson r value between the CEMS measured         creased from 0.99 under the NOC to 0.91 under         ase in RMSE and the decrease in the r value                                                        | F  |  |
| 32<br>33<br>35<br>36<br>37<br>38<br>412<br>443<br>445<br>467<br>489<br>512<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555 | 412<br>413<br>414<br>415<br>416<br>417<br>418<br>419<br>420 | Table 7: CompaStatistical testsPearson rRMSEMAENote: The test data3.6ModeUnder non-normalshutdown, the RMthe normal operativalues and the mN-NOCs for the Xindicated that the | XGBoost         0.98         0.14         0.09         taset contains 50,512 sat         Performance under         I operating conditions (N         1SE increased from 0.13 ft         ting condition (NOC). The         odel predicted values dec         GBoost model. The increase         xGBoost model did not predicted did not predicted values did not predicted | ANN         0.92         0.32         0.23         mples at 1-minute intervals.         Non-normal Operating Conditions         -NOCs), such as equipment startup and         to 0.72 for XGBoost (Fig. 10) compared to that of         e Pearson r value between the CEMS measured         creased from 0.99 under the NOC to 0.91 under         ase in RMSE and the decrease in the r value         perform as well under N-NOCs as under the NOC. | F. |  |



# Figure 10: Non-Normal Operating Condition (N-NOC) vs. Normal Operating Condition (NOC). The NOC comprised 252,180 samples at 1-minute intervals. The N-NOC comprised 379 samples at 1-minute intervals.

Using 1-minute high-resolution data, the ANN model generated higher predicted values when the NO<sub>x</sub> mass flow rate was less than 2 kg/h and generated lower predicted values when the NO<sub>x</sub> mass flow rate was greater than 8 kg/h. In contrast, the XGBoost model performed better for flow rates less than 2 kg/h than the ANN model. However, the XGBoost model still produced values less than 12 kg/h when the CEMS values were greater than 12 kg/h (Fig. 11).



The facility reports its NOx emissions on an hourly basis, and the emission limit for the facility under its operation permit was set in kg/h. We averaged the 1-minute data to hourly data and compared the model performance. On an hourly basis, no emission rates were greater than 12 kg/h. Using the hourly data, the Pearson r was 0.93 for the ANN and 0.99 for XGBoost. All data provided by XGBoost fall close to the 1:1 ratio line (Fig. 12). The XGBoost model showed a higher accuracy than the ANN model when reporting emissions on an hourly basis.

 Page 26 of 34





| 465       Figure 14: Model evaluation of a process upset event using data at 1-hou         466       intervals. The data period is from 00:00 on May 1, 2019, to 23:         467       1, 2019.         468       3.7         469       3.7         470       Although a predictive model is the core component of a PEMS, facility operators of         471       consider the following when building a PEMS on their own:         11       1)       Deploying predictive models to existing process control networks. Process         472       1)       Deploying predictive models to existing process control networks. Process         473       devices, such as distributed control systems, on process networks may no         474       sufficient computational power to run complicated predictive models.         475       2)       Integrating predictive models into existing data acquisition systems and rus         476       systems.       3)         477       3)       Multiple models may be needed to replace one CEMS unit. For example, fa         478       Alberta, Canada, are required to report exhaust flow and temperature, in         479       mass emission rates.         480       Predictive modeling, including ANN and XGBoost algorithms, has shown great periodictive modeling.         481       for emission monitoring. Computer-based emission monitoring methods can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r<br>DO on May<br>weed to<br>control   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 6intervals. The data period is from 00:00 on May 1, 2019, to 23:84671, 2019.114683.7Limitations and Future Study124693.7Limitations and Future Study14470Although a predictive model is the core component of a PEMS, facility operators of16471consider the following when building a PEMS on their own:184721) Deploying predictive models to existing process control networks. Process19473devices, such as distributed control systems, on process networks may not21474sufficient computational power to run complicated predictive models.24474sufficient computational power to run complicated predictive models.254752) Integrating predictive models into existing data acquisition systems and re264773) Multiple models may be needed to replace one CEMS unit. For example, fa27478Alberta, Canada, are required to report exhaust flow and temperature, in28479mass emission rates.29478small stationary combustion sources that do not have regulatory requirements for28481for emission monitoring. A PEMS provides a more accurate emissions reporting methods29483sources than engineering estimation methods with generic emission factor39484small sources than engineering estimation methods with generic emission factor484484small sources than engineering estimation methods with generic emission factor484484small sources than engineerin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>DO on May</b><br>weed to<br>control |
| 8       467       1, 2019.         468       3.7       Limitations and Future Study         470       Although a predictive model is the core component of a PEMS, facility operators of consider the following when building a PEMS on their own:         471       consider the following when building a PEMS on their own:         18       472       1) Deploying predictive models to existing process control networks. Process devices, such as distributed control systems, on process networks may not sufficient computational power to run complicated predictive models.         24       2474       sufficient computational power to run complicated predictive models.         25       475       2) Integrating predictive models into existing data acquisition systems and response.         26       477       3) Multiple models may be needed to replace one CEMS unit. For example, for systems.         26       478       Alberta, Canada, are required to report exhaust flow and temperature, in mass emission rates.         27       478       Alberta, Computer-based emission monitoring methods can be in small stationary combustion sources that do not have regulatory requirements for continuous monitoring. A PEMS provides a more accurate emissions reporting methods with generic emission factor normally used for regulatory reporting. Predictive modeling also offers the potent of normally used for regulatory reporting. Predictive modeling also offers the potent of mortally used for regulatory reporting. Predictive modeling also offers the potent of the following winhout high capital cost. However, further research is                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eed to                                 |
| 468 <b>3.7</b> Limitations and Future Study         470       Although a predictive model is the core component of a PEMS, facility operators of consider the following when building a PEMS on their own:         471       consider the following when building a PEMS on their own:         11       Deploying predictive models to existing process control networks. Process devices, such as distributed control systems, on process networks may not sufficient computational power to run complicated predictive models.         473       2) Integrating predictive models into existing data acquisition systems and response.         474       3) Multiple models may be needed to replace one CEMS unit. For example, for Alberta, Canada, are required to report exhaust flow and temperature, in mass emission rates.         479       mass emission rates.         481       for emission monitoring. Computer-based emission monitoring methods can be in small stationary combustion sources that do not have regulatory requirements for continuous monitoring. A PEMS provides a more accurate emissions reporting methods with generic emission factor normally used for regulatory reporting. Predictive modeling also offers the potent construct a high-resolution network for continuously monitoring point source emisting without high capital cost. However, further research is needed because of the follower for the follow                                                                                                                                                                                                                                                                                                         | eed to<br>control                      |
| 4470Although a predictive model is the core component of a PEMS, facility operators of6471consider the following when building a PEMS on their own:94721) Deploying predictive models to existing process control networks. Process11) Deploying predictive models to existing process control networks. Process11) Deploying predictive models to existing process control networks. Process12) Integrating predictive models into existing data acquisition systems and resisting predictive models into existing data acquisition systems and resistence13) Multiple models may be needed to replace one CEMS unit. For example, fa1478Alberta, Canada, are required to report exhaust flow and temperature, in1mass emission rates.6480Predictive modeling, including ANN and XGBoost algorithms, has shown great per1481for emission monitoring. Computer-based emission monitoring methods can be in2483small stationary combustion sources that do not have regulatory requirements for2484small sources than engineering estimation methods with generic emissions factor2486normally used for regulatory reporting. Predictive modeling also offers the potent487without high capital cost. However, further research is needed because of the followed for continuous for the followed for the followed for the followed for the followed for continuous for continuous for continuous for continuous for the followed for the followe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eed to<br>control                      |
| <ul> <li>471 consider the following when building a PEMS on their own:</li> <li>472 1) Deploying predictive models to existing process control networks. Process<br/>473 devices, such as distributed control systems, on process networks may not<br/>474 sufficient computational power to run complicated predictive models.</li> <li>475 2) Integrating predictive models into existing data acquisition systems and run<br/>476 systems.</li> <li>477 3) Multiple models may be needed to replace one CEMS unit. For example, for<br/>478 Alberta, Canada, are required to report exhaust flow and temperature, in<br/>479 mass emission rates.</li> <li>480 Predictive modeling, including ANN and XGBoost algorithms, has shown great per<br/>481 for emission monitoring. Computer-based emission monitoring methods can be in<br/>482 small stationary combustion sources that do not have regulatory requirements for<br/>483 continuous monitoring. A PEMS provides a more accurate emissions reporting met<br/>484 small sources than engineering estimation methods with generic emissions factor<br/>485 normally used for regulatory reporting. Predictive modeling also offers the potent<br/>486 construct a high-resolution network for continuously monitoring point source emi<br/>487 without high capital cost. However, further research is needed because of the foll</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | control                                |
| <ol> <li>Deploying predictive models to existing process control networks. Process<br/>devices, such as distributed control systems, on process networks may not<br/>sufficient computational power to run complicated predictive models.</li> <li>Integrating predictive models into existing data acquisition systems and run<br/>systems.</li> <li>Integrating predictive models into existing data acquisition systems and run<br/>systems.</li> <li>Multiple models may be needed to replace one CEMS unit. For example, for<br/>Alberta, Canada, are required to report exhaust flow and temperature, in<br/>mass emission rates.</li> <li>Predictive modeling, including ANN and XGBoost algorithms, has shown great per<br/>for emission monitoring. Computer-based emission monitoring methods can be in<br/>small stationary combustion sources that do not have regulatory requirements for<br/>continuous monitoring. A PEMS provides a more accurate emissions reporting met<br/>small sources than engineering estimation methods with generic emissions factor<br/>normally used for regulatory reporting. Predictive modeling also offers the potent<br/>construct a high-resolution network for continuously monitoring point source emit<br/>without high capital cost. However, further research is needed because of the foll</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | control                                |
| <ul> <li>devices, such as distributed control systems, on process networks may not<br/>sufficient computational power to run complicated predictive models.</li> <li>2) Integrating predictive models into existing data acquisition systems and run<br/>systems.</li> <li>3) Multiple models may be needed to replace one CEMS unit. For example, for<br/>Alberta, Canada, are required to report exhaust flow and temperature, in<br/>mass emission rates.</li> <li>Predictive modeling, including ANN and XGBoost algorithms, has shown great per<br/>for emission monitoring. Computer-based emission monitoring methods can be in<br/>small stationary combustion sources that do not have regulatory requirements for<br/>continuous monitoring. A PEMS provides a more accurate emissions reporting methods<br/>small sources than engineering estimation methods with generic emissions factor<br/>normally used for regulatory reporting. Predictive modeling also offers the potent<br/>without high capital cost. However, further research is needed because of the follow</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |
| <ul> <li>474 sufficient computational power to run complicated predictive models.</li> <li>475 2) Integrating predictive models into existing data acquisition systems and response</li> <li>476 systems.</li> <li>477 3) Multiple models may be needed to replace one CEMS unit. For example, for</li> <li>478 Alberta, Canada, are required to report exhaust flow and temperature, in</li> <li>479 mass emission rates.</li> <li>480 Predictive modeling, including ANN and XGBoost algorithms, has shown great per</li> <li>481 for emission monitoring. Computer-based emission monitoring methods can be in</li> <li>482 small stationary combustion sources that do not have regulatory requirements for</li> <li>483 continuous monitoring. A PEMS provides a more accurate emissions reporting methods</li> <li>484 small sources than engineering estimation methods with generic emissions factor</li> <li>485 normally used for regulatory reporting. Predictive modeling also offers the potent</li> <li>486 construct a high-resolution network for continuously monitoring point source emis</li> <li>487 without high capital cost. However, further research is needed because of the follow</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t have                                 |
| <ul> <li>2) Integrating predictive models into existing data acquisition systems and response systems.</li> <li>3) Multiple models may be needed to replace one CEMS unit. For example, for Alberta, Canada, are required to report exhaust flow and temperature, in mass emission rates.</li> <li>Predictive modeling, including ANN and XGBoost algorithms, has shown great performed for emission monitoring. Computer-based emission monitoring methods can be in small stationary combustion sources that do not have regulatory requirements for continuous monitoring. A PEMS provides a more accurate emissions reporting methods with generic emissions factor normally used for regulatory reporting. Predictive modeling also offers the potent construct a high-resolution network for continuously monitoring point source emission without high capital cost. However, further research is needed because of the follower and the presence in the follower and the presence in the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is needed because of the follower and the presence is neaded because of the follower and t</li></ul> |                                        |
| <ul> <li>476 systems.</li> <li>477 3) Multiple models may be needed to replace one CEMS unit. For example, fa</li> <li>478 Alberta, Canada, are required to report exhaust flow and temperature, in</li> <li>479 mass emission rates.</li> <li>480 Predictive modeling, including ANN and XGBoost algorithms, has shown great per</li> <li>481 for emission monitoring. Computer-based emission monitoring methods can be in</li> <li>482 small stationary combustion sources that do not have regulatory requirements for</li> <li>483 continuous monitoring. A PEMS provides a more accurate emissions reporting met</li> <li>484 small sources than engineering estimation methods with generic emissions factor</li> <li>485 normally used for regulatory reporting. Predictive modeling also offers the potent</li> <li>486 construct a high-resolution network for continuously monitoring point source emi</li> <li>487 without high capital cost. However, further research is needed because of the follow</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | porting                                |
| <ul> <li>3) Multiple models may be needed to replace one CEMS unit. For example, fa</li> <li>Alberta, Canada, are required to report exhaust flow and temperature, in</li> <li>mass emission rates.</li> <li>Predictive modeling, including ANN and XGBoost algorithms, has shown great per</li> <li>for emission monitoring. Computer-based emission monitoring methods can be in</li> <li>small stationary combustion sources that do not have regulatory requirements for</li> <li>continuous monitoring. A PEMS provides a more accurate emissions reporting met</li> <li>small sources than engineering estimation methods with generic emissions factor</li> <li>normally used for regulatory reporting. Predictive modeling also offers the potent</li> <li>construct a high-resolution network for continuously monitoring point source emi</li> <li>without high capital cost. However, further research is needed because of the following is predictive in the potent is source in the potent is source in the potent is needed because of the following is predictive.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| <ul> <li>Alberta, Canada, are required to report exhaust flow and temperature, in</li> <li>mass emission rates.</li> <li>Predictive modeling, including ANN and XGBoost algorithms, has shown great per</li> <li>for emission monitoring. Computer-based emission monitoring methods can be in</li> <li>small stationary combustion sources that do not have regulatory requirements for</li> <li>continuous monitoring. A PEMS provides a more accurate emissions reporting met</li> <li>small sources than engineering estimation methods with generic emissions factor</li> <li>normally used for regulatory reporting. Predictive modeling also offers the potent</li> <li>construct a high-resolution network for continuously monitoring point source emi</li> <li>without high capital cost. However, further research is needed because of the following and the potent of the potent potent of the potent potent of the potent of the potent of the potent potent of the potent potent of the potent p</li></ul> | cilities in                            |
| 479 mass emission rates. 480 Predictive modeling, including ANN and XGBoost algorithms, has shown great per 481 for emission monitoring. Computer-based emission monitoring methods can be in 482 small stationary combustion sources that do not have regulatory requirements for 483 continuous monitoring. A PEMS provides a more accurate emissions reporting met 484 small sources than engineering estimation methods with generic emissions factor 485 normally used for regulatory reporting. Predictive modeling also offers the potent 486 construct a high-resolution network for continuously monitoring point source emi 487 without high capital cost. However, further research is needed because of the follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | addition to                            |
| Predictive modeling, including ANN and XGBoost algorithms, has shown great per<br>for emission monitoring. Computer-based emission monitoring methods can be in<br>small stationary combustion sources that do not have regulatory requirements for<br>continuous monitoring. A PEMS provides a more accurate emissions reporting met<br>small sources than engineering estimation methods with generic emissions factor<br>normally used for regulatory reporting. Predictive modeling also offers the potent<br>construct a high-resolution network for continuously monitoring point source emi<br>without high capital cost. However, further research is needed because of the foll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| for emission monitoring. Computer-based emission monitoring methods can be in<br>small stationary combustion sources that do not have regulatory requirements for<br>continuous monitoring. A PEMS provides a more accurate emissions reporting methods<br>small sources than engineering estimation methods with generic emissions factor<br>normally used for regulatory reporting. Predictive modeling also offers the potent<br>construct a high-resolution network for continuously monitoring point source emi<br>without high capital cost. However, further research is needed because of the foll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | formance                               |
| small stationary combustion sources that do not have regulatory requirements for<br>continuous monitoring. A PEMS provides a more accurate emissions reporting me<br>small sources than engineering estimation methods with generic emissions factor<br>normally used for regulatory reporting. Predictive modeling also offers the potent<br>construct a high-resolution network for continuously monitoring point source emi<br>without high capital cost. However, further research is needed because of the foll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | stalled on                             |
| continuous monitoring. A PEMS provides a more accurate emissions reporting me<br>small sources than engineering estimation methods with generic emissions factor<br>normally used for regulatory reporting. Predictive modeling also offers the potent<br>construct a high-resolution network for continuously monitoring point source emi<br>without high capital cost. However, further research is needed because of the foll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r                                      |
| small sources than engineering estimation methods with generic emissions factor<br>normally used for regulatory reporting. Predictive modeling also offers the potent<br>construct a high-resolution network for continuously monitoring point source emi<br>without high capital cost. However, further research is needed because of the foll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | thod for                               |
| normally used for regulatory reporting. Predictive modeling also offers the potent<br>construct a high-resolution network for continuously monitoring point source emi<br>without high capital cost. However, further research is needed because of the following th     | s that are                             |
| <ul><li>486 construct a high-resolution network for continuously monitoring point source emi</li><li>487 without high capital cost. However, further research is needed because of the following the following point source emi</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ial to                                 |
| 487 without high capital cost. However, further research is needed because of the following the following the following the second seco           | ssions                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | owing                                  |
| 88 limitations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
| • Predictive models tend to be equipment-specific. A model trained for one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | piece of                               |
| equipment may not generate the same performance when applied to anot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | her piece                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Page 29 of 34                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |

1

of equipment for air emissions monitoring. Model generalization is needed for wider installation and application.

The performance of predictive models for low and high emission rates (or low and high emission concentrations) is not as good as that for normal emission rates. **495** Accurately predicting high emission rates is critical because facility operators must demonstrate through monitoring methods that their operations meet the maximum **496** <sup>17</sup> **497** emission limits set by the regulator. In this study, the XGBoost model generated <sup>19</sup> 498 lower predictive values than the CEMS measured values for high emission rates.

#### 3.8 Conclusions

<sub>24</sub> 500 Open-source libraries can play a critical role in the wider installation of PEMSs because **501** commercial PEMSs reportedly have initial capital costs similar to CEMSs. Compared with **502** ANN-based predictive models, tree-based machine learning methods, such as XGBoost, are <sup>30</sup> 503 easier to understand, require less effort for data preprocessing, have fewer <sup>32</sup> 504 hyperparameters for model tuning, and need less time for model training.

In this study, we demonstrated that the XGBoost machine learning algorithm can be used to build predictive models for NO<sub>x</sub> emissions monitoring. The NO<sub>x</sub> emission values **507** predicted by the best model structure using random search techniques meet all the 41 508 statistical requirements outlined by US EPA PS16. The Pearson correlation r value between **509** the XGBoost-predicted NO<sub>x</sub> values and the CEMS-measured NO<sub>x</sub> values was 0.98 at 1-<sup>45</sup> 510 minute intervals. The RMSE and MAE using 1-minute interval data in the test dataset were 0.14 and 0.09, respectively. 

In addition, we proposed a data imputation method for sensor failure and tested model sensitivity using this method. Although there are many more complex data **514** imputation methods, such as K-nearest neighbors, K-means, and multiple imputations by **515** chained equations (Schmitt et al., 2015), we demonstrated a simple imputation by <sup>58</sup> 516 interpolating that the time distance is enough to meet regulatory requirements for

Page 30 of 34

predictive emissions modeling. The model inputs are univariate time series data, and linear interpolation is effective for missing data imputation because the precision of the XGBoost model used in this study changed only up to 5.14% using substitute data when two sensors

Further research is still needed to improve model precision for non-normal operating conditions, especially when emission rates (concentrations) are high, because the precision determines if facilities meet the emission limits required by regulations.

The authors thank the Environment and Water group and Jessica Coles from Tetra Tech

Canada Inc. for editing the manuscript.

This study was supported by the Natural Sciences and Engineering Research Council

(NSERC) of Canada (fund number CRDPJ535813-18) and by Mitacs through the Mitacs

Accelerate program (fund number IT18400).

#### **Author Contributions**

MS: Formal analysis; Methodology; Writing - original draft. DK: Project administration;

Funding acquisition; Writing - original draft.

#### **Declaration of Competing Interest**

The authors declare they have no actual or potential competing interests.

ABB S.p.A., 2014. Predictive Emission Monitoring Systems The new approach for monitoring <sup>54</sup> 540 emissions from industry [WWW Document]. URL <sup>55</sup> 541 https://library.e.abb.com/public/4128e88396a14d83b8116a2a71b5b88f/PB\_PEMS-<sup>56</sup> 542 EN.pdf (accessed 8.22.18).

Bivens, T., 2019. Arkansas Electric Cooperative Corporation. Little Rock, Arkansas. Personal communication

Page 31 of 34

| 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <sup>4</sup> 545                 | Bivens, T., 2017. CEMS Alternatives – A Different Way.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <sup>5</sup> 546                 | https://www.jasupra.com/legainews/cems-alternatives-a-different-way-tim-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - 547<br>7 E49                   | 42097/(dccessed 8.23.18).<br>Regingeri T. Smirniotic R.C. 2016 Impact of nitrogen evides on the environment and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8 540                            | build |
| <sup>9</sup> 550                 | 13 133–141 https://doi.org/10.1016/j.coche 2016.09.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $^{10}_{11}$ 551                 | Botros, K.K., Williams-Gossen, C., Makwana, S., Siarkowski, L., 2011, Predictive Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12 <b>552</b>                    | Monitoring (PEM) Systems Development and Implementation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13 553                           | Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System, in: Proceedings of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14 554                           | the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15 <b>555</b>                    | Mining - KDD '16. Presented at the the 22nd ACM SIGKDD International Conference,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16 <b>556</b>                    | ACM Press, San Francisco, California, USA, pp. 785–794.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 17 557                           | https://doi.org/10.1145/2939672.2939785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 18 558                           | Chien, I.W., Chu, H., Hsu, W.C., Tu, Y.Y., Isai, H.S., Chen, K.Y., 2005. A performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 19 <b>559</b>                    | study of PEMS applied to the Hsinta power station of Talpower. Atmos. Environ. 39,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20 560                           | 223-230.  Inttps://doi.org/10.1010/j.dtmosenv.2004.09.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <sup>22</sup> 562                | Feasibility Study of a Predictive Emissions Monitoring System Applied to Tainower's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <sup>23</sup> 563                | Nannu and Hsinta Power Plants, 1. Air Waste Manag, Assoc. 60, 907–913.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <sup>24</sup> 564                | https://doi.org/10.3155/1047-3289.60.8.907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <sup>25</sup> 565                | Cooper, D.A., Andreasson, K., 1999. Predictive NOx emission monitoring on board a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <sup>26</sup> <sub>27</sub> 566  | passenger ferry. Atmos. Environ. 33, 4637–4650. https://doi.org/10.1016/S1352-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <sup>2</sup> / <sub>28</sub> 567 | 2310(99)00239-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 29 <b>568</b>                    | Cozza, A., Faulkner, K.F., 1993. Acid rain program offers free-market incentives, portends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <sub>30</sub> 569                | future regulation. Hazmat World U. S. 6:5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 31 570                           | Cuccu, G., Danafar, S., Cudre-Mauroux, P., Gassner, M., Bernero, S., Kryszczuk, K., 2017.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 32 571                           | A data-univen approach to predict NOX-emissions of gas turbines, in: 2017 IEEE<br>International Conference on Big Data (Big Data), Presented at the 2017 IEEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 33 J72<br>24 573                 | International Conference on Big Data (Big Data), IFEE Boston, MA, np. 1283–1288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 35 574                           | https://doi.org/10.1109/BigData.2017.8258056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 36 575                           | Eisenmann, T., Bianchin, D.R., Triebel, D., 2014. Predictive Emission Monitoring (PEM):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 37 576                           | Suitability and Application in View of U.S. EPA and European Regulatory Frameworks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <sup>38</sup> 577                | Presented at the The 11th International Conference & Exhibition on Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <sup>39</sup> 578                | Monitoring (CEM) 2014, Istanbul, Turkey, p. 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <sup>40</sup> 579                | Environment and Climate Change Canada, 2019. Canada's Air Pollutant Emissions Inventory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <sup>42</sup> 580                | Report: annex 1 [WWW Document]. aem. URL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <sup>43</sup> 581                | https://www.canada.ca/en/environment-climate-change/services/air-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 44 583                           | 1 4 20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <sup>45</sup> 584                | European Committe for Standardization 2018 Stationary source emissions - Predictive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\frac{46}{47}$ 585              | Emission Monitoring Systems (PEMS) - Applicability, execution and quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <sup>47</sup> 586                | assurance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 49 <b>587</b>                    | Faravelli, T., Bua, L., Frassoldati, A., Antifora, A., Tognotti, L., Ranzi, E., 2000. A new                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <sub>50</sub> 588                | procedure for predicting NOx emissions from furnaces. Comput. Aided Chem. Eng.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 51 <b>589</b>                    | European Symposium on Computer Aided Process Engineering-10 8, 859–864.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 52 <b>590</b>                    | https://doi.org/10.1016/S1570-7946(00)80145-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 53 <b>591</b>                    | Friedman, J.H., 2001. Greedy Function Approximation: A Gradient Boosting Machine. Ann.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 55 502                           | Stat. 29, 1189-1232.<br>Gualman J. 2012. Cradient boosting trees for puts incurance lass cost modeling and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 56 504                           | nrediction Expert Syst Appl 39 3659-3667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 57 595                           | https://doi.org/10.1016/i.eswa.2011.09.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 58                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 59                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6U<br>61                         | Page 32 of 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 62                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 63                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 64                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 1                               |                                                                                                                                                                        |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                               |                                                                                                                                                                        |
| 4 596<br>5 597                  | Harnevie, H., Sarkoezi, L., Trenkle, S., 1996. Predictive emission monitoring system (PEMS) for emission control in biomass fired plants (No. SVF575). Stiftelsen foer |
| <sup>7</sup> 598                | Hung, W.S.Y., 1975. An Experimentally Verified NOx Emission Model for Gas Turbine                                                                                      |
| <sup>°</sup> <sub>9</sub> 600   | Combustors V01BT02A009. https://doi.org/10.1115/75-GT-71                                                                                                               |
| $10^{10}$ 601                   | Hung, W.S.Y., Langenbacher, F., 1995. PEMS: Monitoring NOX Emissions From Gas                                                                                          |
| <sup>11</sup> 602               | Structures and Dynamics: Controls, Diagnostics and Instrumentation: Education:                                                                                         |
| 12 603                          | IGTI Scholar Award Presented at the ASME 1995 International Gas Turbine and                                                                                            |
| 14 605                          | Aeroengine Congress and Exposition, ASME, Houston, Texas, USA, p. V005T15A016.                                                                                         |
| 15 606                          | https://doi.org/10.1115/95-GT-415                                                                                                                                      |
| 16 <b>607</b>                   | Kamas, J., Keeler, J., 1995. Predictive emissions monitoring systems: a low-cost alternative                                                                           |
| 17 <b>608</b>                   | for emissions monitoring [in cement industry], in: 1995 IEEE Cement Industry                                                                                           |
| 18 <b>609</b>                   | Technical Conference. 37th Conference Record. Presented at the 1995 IEEE Cement                                                                                        |
| 19 610                          | Industry Technical Conference. 37th Conference Record, IEEE, San Juan, Puerto                                                                                          |
| 20 611<br>21 612                | Rico, pp. 497–509. https://doi.org/10.1109/CITCON.1995.514350                                                                                                          |
| <sup>22</sup> 613               | random forests: Statistical arbitrage on the S&P 500 Fur 1 Oper Res 259 689-                                                                                           |
| <sup>23</sup> 614               | 702. https://doi.org/10.1016/i.ejor.2016.10.031                                                                                                                        |
| <sup>24</sup> 615               | Labram, A., 2019. Article: Fitting data with XGBoost   Institute and Faculty of Actuaries                                                                              |
| <sup>25</sup> 616               | [WWW Document]. URL https://www.actuaries.org.uk/news-and-                                                                                                             |
| $\frac{20}{27}$ 617             | insights/news/article-fitting-data-xgboost (accessed 1.23.20).                                                                                                         |
| 28 618                          | Lee, YH., Kim, M., Han, C., 2005. Application of Multivariate Statistical Models to                                                                                    |
| 29 619                          | Prediction of NUX Emissions from Complex Industrial Heater Systems. J. Environ.                                                                                        |
| 30 020                          | Mandel 1 S.P. 2015 A Comparison of Six Methods for Missing Data Imputation, 1 Biom                                                                                     |
| 32 622                          | Biostat. 06. https://doi.org/10.4172/2155-6180.1000224                                                                                                                 |
| 33 623                          | Mauzerall, D., Sultan, B., Kim, N., Bradford, D., 2005. NO emissions from large point                                                                                  |
| 34 624                          | sources: variability in ozone production, resulting health damages and economic                                                                                        |
| 35 <b>625</b>                   | costs. Atmos. Environ. 39, 2851–2866.                                                                                                                                  |
| 36 626                          | https://doi.org/10.1016/j.atmosenv.2004.12.041                                                                                                                         |
| 38 628                          | Technology Trondheim Norway                                                                                                                                            |
| <sup>39</sup> 629               | Roth, M., Lawrence, P., 2010. A cost-effective alternative to continuous emission monitoring                                                                           |
| <sup>40</sup> 630               | systems. Environ. Sci. Eng. Mag. 56–57.                                                                                                                                |
| <sup>41</sup> 631               | Saiepour, M., Schofield, N., Leden, B., Niska, J., Link, N., Unamuno, I., Gomes, J., 2006.                                                                             |
| <sup>42</sup> <sub>43</sub> 632 | Development and Assessment of Predictive Emission Monitoring Systems (PEMS)                                                                                            |
| <sup>13</sup> 633               | Models in the Steel Industry, in: Iron and Steel Technology Conference Proceedings.                                                                                    |
| 45 634                          | Presented at the AISTech 2006, Association for Iron & Steel Technology, Cleveland,                                                                                     |
| $\frac{46}{100}$ 636            | Semaniski I Gautama S 2015 Smart City Mobility Application—Gradient Boosting Trees                                                                                     |
| 4 <sup>1</sup> / 637            | for Mobility Prediction and Analysis Based on Crowdsourced Data. Sensors 15,                                                                                           |
| 49 638                          | 15974–15987. https://doi.org/10.3390/s150715974                                                                                                                        |
| <sub>50</sub> 639               | Si, M., Tarnoczi, T.J., Wiens, B.M., Du, K., 2019. Development of Predictive Emissions                                                                                 |
| 51 640                          | Monitoring System Using Open Source Machine Learning Library – Keras: A Case                                                                                           |
| 52 641                          | Study on a Cogeneration Unit. IEEE Access 7, 113463-113475.                                                                                                            |
| 53 042<br>54 643                | Swanson B 2018 CMC Solutions Pleasant Hill IA Personal communication Nov 2018                                                                                          |
| 55 644                          | Tan, P., Xia, J., Zhang, C., Fang, O., Chen, G., 2016. Modeling and reduction of NOX                                                                                   |
| <sup>56</sup> 645               | emissions for a 700 MW coal-fired boiler with the advanced machine learning                                                                                            |
| <sup>57</sup> 646               | method. Energy 94, 672–679. https://doi.org/10.1016/j.energy.2015.11.020                                                                                               |
| <sup>58</sup> 647               | US EPA, 2019. What Pollutants are Included in "oxides of nitrogen" in MOVES?   MOVES and                                                                               |
| 59 <b>648</b><br>60             | Other Mobile Source Emissions Models   US EPA [WWW Document]. URL                                                                                                      |
| 61                              | Page 33 of 34                                                                                                                                                          |
| 62                              |                                                                                                                                                                        |
| 63                              |                                                                                                                                                                        |

| 1                   |                                                                                               |
|---------------------|-----------------------------------------------------------------------------------------------|
| 2                   |                                                                                               |
| 3                   |                                                                                               |
| <sup>4</sup> 649    | https://www.epa.gov/moves/what-pollutants-are-included-oxides-nitrogen-moves                  |
| <sup>5</sup> 650    | (accessed 12.31.19).                                                                          |
| <sup>6</sup> 651    | US EPA, 2018. Performance specification 16—specifications and test procedures for             |
| έg652               | predictive emission monitoring systems in stationary sources.                                 |
| <sub>ິ</sub> 653    | US EPA, 2009. Performance Specification 16 for Predictive Emissions Monitoring Systems        |
| 10 <b>654</b>       | and Amendments to Testing and Monitoring Provisions. Fed. Regist., Rules and                  |
| 11 655              | Regulations 74, 12575–12591.                                                                  |
| <sub>12</sub> 656   | US EPA, 2006. Approval of the Predictive Emission Monitoring System Installed on Unit         |
| 13 657              | BL2100 at Dearborn Industrial Generation (Facility ID (ORISPL) 55088).                        |
| 14 658              | US EPA, 1999. Nitrogen Oxides (NOX), Why and How They are Controlled.                         |
| 15 659              | US EPA, 1994. An Operator's Guide To Eliminating Bias in CEM Systems (No. EPA/430/R-94-       |
| 16 660              | U10).<br>Vanderbeggen E. Deneve M. Laget II. Faniel N. Mertene J. 2010. Predictive Emissione. |
| 10 662              | Vandernaegen, E., Deneve, M., Lagel, H., Faniel, N., Mertens, J., 2010. Predictive Emissions  |
| 19 662              | https://doi.org/10.1115/GT2010-22800                                                          |
| 20 664              | White 1 R 1993 CEMs turn monitoring giant Pollut Eng. U.S. 25:13                              |
| 21 665              | XGBoost developers 2019 XGBoost Parameters — xgboost 1.0.0-SNAPSHOT                           |
| <sup>22</sup> 666   | documentation [WWW Document] URI                                                              |
| <sup>23</sup> 667   | https://xgboost.readthedocs.io/en/latest/parameter.html (accessed 1.24.20).                   |
| <sup>24</sup> 668   | Zain, S.M., Kien Kek Chua, 2011. Development of a neural network Predictive Emission          |
| <sup>25</sup> 669   | Monitoring System for flue gas measurement, in: 2011 IEEE 7th International                   |
| <sup>26</sup> 670   | Colloquium on Signal Processing and Its Applications. Presented at the 2011 IEEE 7th          |
| 28 <sup>/</sup> 671 | International Colloquium on Signal Processing and its Applications, pp. 314–317.              |
| <sub>29</sub> 672   | https://doi.org/10.1109/CSPA.2011.5759894                                                     |
| <sub>30</sub> 673   | Zhang, Y., Haghani, A., 2015. A gradient boosting method to improve travel time prediction.   |
| 31 6/4              | Iransp. Res. Part C Emerg. Technol. 58, 308–324.                                              |
| 32 0/5              | https://doi.org/10.1016/j.trc.2015.02.019                                                     |
| 33 0/0              |                                                                                               |
| 34<br>25            |                                                                                               |
| 36                  |                                                                                               |
| 37                  |                                                                                               |
| 38                  |                                                                                               |
| 39                  |                                                                                               |
| 40<br>41            |                                                                                               |
| ±⊥<br>42            |                                                                                               |
| 43                  |                                                                                               |
| 44                  |                                                                                               |
| 45                  |                                                                                               |
| 46                  |                                                                                               |
| 47<br>49            |                                                                                               |
| 49                  |                                                                                               |
| 50                  |                                                                                               |
| 51                  |                                                                                               |
| 52                  |                                                                                               |
| 53                  |                                                                                               |
| 54<br>FF            |                                                                                               |
| 55<br>56            |                                                                                               |
| 57                  |                                                                                               |
| 58                  |                                                                                               |
| 59                  |                                                                                               |
| 60<br>C1            | Pane 34 of 34                                                                                 |
| o⊥<br>62            |                                                                                               |
| 63                  |                                                                                               |
| 64                  |                                                                                               |
| 65                  |                                                                                               |
|                     |                                                                                               |

- Gradient Boosting
- Machine learning on environmental monitoring and modeling
- Predictive emissions monitoring system
- PEMS
- XGBoost

**Minxing Si**: Formal analysis; Methodology; Role/Writing - original draft.

**Ke Du**: Project administration; Funding acquisition; Role/Writing - review & editing.

#### **Declaration of interests**

 $\boxtimes$  The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

